langchain_community.vectorstores.clickhouse
.Clickhouse¶
- class langchain_community.vectorstores.clickhouse.Clickhouse(embedding: Embeddings, config: Optional[ClickhouseSettings] = None, **kwargs: Any)[source]¶
ClickHouse VectorSearch 向量存储。
您需要 clickhouse-connect Python 包,以及一个有效的 ClickHouse 账户来连接。
ClickHouse 不仅可以使用简单的向量索引进行搜索,还支持使用多条件、约束甚至子查询的复杂查询。
- 更多信息,请访问
[ClickHouse 官方网站](https://clickhouse.ac.cn/clickhouse)
LangChain 的 ClickHouse 封装器
embedding_function (Embeddings): config (ClickHouseSettings): ClickHouse 客户端配置。其他关键字参数将传递到
[clickhouse-connect](https://docs.clickhouse.com/)
属性
embeddings
提供对 Clickhouse 实例使用的嵌入机制的访问。
metadata_column
方法
__init__
(embedding[, config])LangChain 的 ClickHouse 封装器
aadd_documents
(documents, **kwargs)异步地通过嵌入运行更多文档并添加到向量存储。
aadd_texts
(texts[, metadatas])异步地通过嵌入运行更多文本并添加到向量存储。
add_documents
(documents, **kwargs)在向量存储中添加或更新文档。
add_texts
(texts[, metadatas, batch_size, ids])通过嵌入插入更多文本并添加到 VectorStore。
adelete
([ids])异步地通过向量 ID 或其他条件删除。
afrom_documents
(documents, embedding, **kwargs)异步地从文档和嵌入初始化并返回 VectorStore。
afrom_texts
(texts, embedding[, metadatas])异步地从文本和嵌入初始化并返回 VectorStore。
aget_by_ids
(ids, /)异步地通过 ID 获取文档。
amax_marginal_relevance_search
(query[, k, ...])异步地返回使用最大边际相关性选择的文档。
异步地返回使用最大边际相关性选择的文档。
as_retriever
(**kwargs)返回从此 VectorStore 初始化的 VectorStoreRetriever。
asearch
(query, search_type, **kwargs)异步地返回使用指定搜索类型与查询最相似的文档。
asimilarity_search
(query[, k])异步地返回与查询最相似的文档。
asimilarity_search_by_vector
(embedding[, k])异步地返回与嵌入向量最相似的文档。
异步地返回范围在 [0, 1] 内的文档和相关性分数。
asimilarity_search_with_score
(*args, **kwargs)异步地运行带距离的相似性搜索。
astreaming_upsert
(items, /, batch_size, **kwargs)aupsert
(items, /, **kwargs)delete
([ids])通过向量 ID 或其他条件删除。
drop
()辅助函数:删除数据
escape_str
(value)转义 Clickhouse SQL 查询中字符串中的特殊字符。
from_documents
(documents, embedding, **kwargs)从文档和嵌入初始化并返回 VectorStore。
from_texts
(texts, embedding[, metadatas, ...])使用现有文本创建 ClickHouse 封装器
get_by_ids
(ids, /)通过 ID 获取文档。
max_marginal_relevance_search
(query[, k, ...])返回使用最大边际相关性选择的文档。
返回使用最大边际相关性选择的文档。
search
(query, search_type, **kwargs)返回使用指定搜索类型与查询最相似的文档。
similarity_search
(query[, k, where_str])使用 ClickHouse 执行相似性搜索
similarity_search_by_vector
(embedding[, k, ...])通过向量使用 ClickHouse 执行相似性搜索
使用 ClickHouse 执行相似性搜索
similarity_search_with_score
(*args, **kwargs)运行带距离的相似性搜索。
streaming_upsert
(items, /, batch_size, **kwargs)upsert
(items, /, **kwargs)- 参数
embedding (Embeddings) –
config (Optional[ClickhouseSettings]) –
kwargs (Any) –
- __init__(embedding: Embeddings, config: Optional[ClickhouseSettings] = None, **kwargs: Any) None [source]¶
LangChain 的 ClickHouse 封装器
embedding_function (Embeddings): config (ClickHouseSettings): ClickHouse 客户端配置。其他关键字参数将传递到
[clickhouse-connect](https://docs.clickhouse.com/)
- 参数
embedding (Embeddings) –
config (Optional[ClickhouseSettings]) –
kwargs (Any) –
- 返回类型
None
- async aadd_documents(documents: List[Document], **kwargs: Any) List[str] ¶
异步地通过嵌入运行更多文档并添加到向量存储。
- 参数
documents (List[Document]) – 要添加到向量存储的文档列表。
kwargs (Any) – 额外的关键字参数。
- 返回
添加的文本的 ID 列表。
- Raises
ValueError – 如果 ID 的数量与文档的数量不匹配。
- 返回类型
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] ¶
异步地通过嵌入运行更多文本并添加到向量存储。
- 参数
texts (Iterable[str]) – 要添加到向量存储的字符串的可迭代对象。
metadatas (Optional[List[dict]]) – 与文本关联的可选元数据列表。默认为 None。
**kwargs (Any) – 向量存储特定的参数。
- 返回
从将文本添加到向量存储中获取的 ID 列表。
- Raises
ValueError – 如果元数据的数量与文本的数量不匹配。
ValueError – 如果 ID 的数量与文本的数量不匹配。
- 返回类型
List[str]
- add_documents(documents: List[Document], **kwargs: Any) List[str] ¶
在向量存储中添加或更新文档。
- 参数
documents (List[Document]) – 要添加到向量存储的文档列表。
kwargs (Any) – 额外的关键字参数。如果 kwargs 包含 ids 并且 documents 包含 ids,则 kwargs 中的 ids 将优先。
- 返回
添加的文本的 ID 列表。
- Raises
ValueError – 如果 ID 的数量与文档的数量不匹配。
- 返回类型
List[str]
- add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, batch_size: int = 32, ids: Optional[Iterable[str]] = None, **kwargs: Any) List[str] [source]¶
通过嵌入插入更多文本并添加到 VectorStore。
- 参数
texts (Iterable[str]) – 要添加到 VectorStore 的字符串的可迭代对象。
ids (Optional[Iterable[str]]) – 与文本关联的可选 ID 列表。
batch_size (int) – 插入的批次大小
metadata – 要插入的可选列数据
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- 返回
从将文本添加到 VectorStore 获取的 ID 列表。
- 返回类型
List[str]
- async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
异步地通过向量 ID 或其他条件删除。
- 参数
ids (Optional[List[str]]) – 要删除的 ID 列表。如果为 None,则删除全部。默认为 None。
**kwargs (Any) – 子类可能使用的其他关键字参数。
- 返回
如果删除成功,则为 True,否则为 False;如果未实现,则为 None。
- 返回类型
Optional[bool]
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
异步地从文档和嵌入初始化并返回 VectorStore。
- 参数
documents (List[Document]) – 要添加到向量存储的文档列表。
embedding (Embeddings) – 要使用的嵌入函数。
kwargs (Any) – 额外的关键字参数。
- 返回
从文档和嵌入初始化的 VectorStore。
- 返回类型
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST ¶
异步地从文本和嵌入初始化并返回 VectorStore。
- 参数
texts (List[str]) – 要添加到向量存储的文本列表。
embedding (Embeddings) – 要使用的嵌入函数。
metadatas (Optional[List[dict]]) – 与文本关联的可选元数据列表。默认为 None。
kwargs (Any) – 额外的关键字参数。
- 返回
从文本和嵌入初始化的 VectorStore。
- 返回类型
- async aget_by_ids(ids: Sequence[str], /) List[Document] ¶
异步地通过 ID 获取文档。
返回的文档应将 ID 字段设置为文档在向量存储中的 ID。
如果某些 ID 未找到或存在重复的 ID,则返回的文档可能少于请求的文档。
用户不应假设返回文档的顺序与输入 ID 的顺序匹配。相反,用户应依赖返回文档的 ID 字段。
如果没有为某些 ID 找到文档,此方法不应引发异常。
- 参数
ids (Sequence[str]) – 要检索的 ID 列表。
- 返回
文档列表。
- 返回类型
List[Document]
0.2.11 版本新增。
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
异步地返回使用最大边际相关性选择的文档。
最大边际相关性优化了与查询的相似性和所选文档之间的多样性。
- 参数
query (str) – 用于查找相似文档的文本。
k (int) – 要返回的文档数量。默认为 4。
fetch_k (int) – 要获取以传递给 MMR 算法的文档数量。默认为 20。
lambda_mult (float) – 介于 0 和 1 之间的数字,用于确定结果之间多样性的程度,其中 0 对应于最大多样性,1 对应于最小多样性。默认为 0.5。
kwargs (Any) –
- 返回
按最大边际相关性选择的文档列表。
- 返回类型
List[Document]
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
异步地返回使用最大边际相关性选择的文档。
最大边际相关性优化了与查询的相似性和所选文档之间的多样性。
- 参数
embedding (List[float]) – 用于查找相似文档的嵌入。
k (int) – 要返回的文档数量。默认为 4。
fetch_k (int) – 要获取以传递给 MMR 算法的文档数量。默认为 20。
lambda_mult (float) – 介于 0 和 1 之间的数字,用于确定结果之间多样性的程度,其中 0 对应于最大多样性,1 对应于最小多样性。默认为 0.5。
**kwargs (Any) – 传递给搜索方法的参数。
- 返回
按最大边际相关性选择的文档列表。
- 返回类型
List[Document]
- as_retriever(**kwargs: Any) VectorStoreRetriever ¶
返回从此 VectorStore 初始化的 VectorStoreRetriever。
- 参数
**kwargs (Any) –
传递给搜索函数的关键字参数。可以包括:search_type (Optional[str]):定义检索器应执行的搜索类型。
可以是 “similarity”(默认)、“mmr” 或 “similarity_score_threshold”。
- search_kwargs (Optional[Dict]):传递给
- 搜索函数的关键字参数。可以包括如下内容:
k:返回的文档数量(默认值:4) score_threshold:相似度评分阈值的最小相关性阈值
用于 similarity_score_threshold
- fetch_k:传递给 MMR 算法的文档数量
(默认值:20)
- lambda_mult:MMR 返回结果的多样性;
1 表示最小多样性,0 表示最大多样性。(默认值:0.5)
filter:按文档元数据过滤
- 返回
VectorStore 的检索器类。
- 返回类型
示例
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document] ¶
异步地返回使用指定搜索类型与查询最相似的文档。
- 参数
query (str) – 输入文本。
search_type (str) – 要执行的搜索类型。可以是 “similarity”、“mmr” 或 “similarity_score_threshold”。
**kwargs (Any) – 传递给搜索方法的参数。
- 返回
与查询最相似的文档列表。
- Raises
ValueError – 如果 search_type 不是 “similarity”、“mmr” 或 “similarity_score_threshold” 之一。
- 返回类型
List[Document]
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) List[Document] ¶
异步地返回与查询最相似的文档。
- 参数
query (str) – 输入文本。
k (int) – 要返回的文档数量。默认为 4。
**kwargs (Any) – 传递给搜索方法的参数。
- 返回
与查询最相似的文档列表。
- 返回类型
List[Document]
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document] ¶
异步地返回与嵌入向量最相似的文档。
- 参数
embedding (List[float]) – 用于查找相似文档的嵌入。
k (int) – 要返回的文档数量。默认为 4。
**kwargs (Any) – 传递给搜索方法的参数。
- 返回
与查询向量最相似的文档列表。
- 返回类型
List[Document]
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
异步地返回范围在 [0, 1] 内的文档和相关性分数。
0 表示不相似,1 表示最相似。
- 参数
query (str) – 输入文本。
k (int) – 要返回的文档数量。默认为 4。
**kwargs (Any) –
要传递给相似度搜索的 kwargs。应包括:score_threshold:可选,介于 0 到 1 之间的浮点值,用于
过滤检索到的文档结果集
- 返回
(文档,相似度评分)元组的列表
- 返回类型
List[Tuple[Document, float]]
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]] ¶
异步地运行带距离的相似性搜索。
- 参数
*args (Any) – 传递给搜索方法的参数。
**kwargs (Any) – 传递给搜索方法的参数。
- 返回
(文档,相似度评分)元组的列表。
- 返回类型
List[Tuple[Document, float]]
- astreaming_upsert(items: AsyncIterable[Document], /, batch_size: int, **kwargs: Any) AsyncIterator[UpsertResponse] ¶
Beta 版本
在 0.2.11 版本中添加。API 可能会发生变化。
以流式方式 Upsert 文档。 streaming_upsert 的异步版本。
- 参数
items (AsyncIterable[Document]) – 要添加到向量存储的文档的可迭代对象。
batch_size (int) – 每次 upsert 的批量大小。
kwargs (Any) – 附加关键字参数。kwargs 应仅包括所有文档通用的参数。(例如,索引超时、重试策略等)kwargs 不应包含 id,以避免语义模糊。相反,ID 应作为 Document 对象的一部分提供。
- Yields
UpsertResponse – 响应对象,其中包含已成功添加到或更新到向量存储中的 ID 列表,以及未能添加或更新的 ID 列表。
- 返回类型
AsyncIterator[UpsertResponse]
0.2.11 版本新增。
- async aupsert(items: Sequence[Document], /, **kwargs: Any) UpsertResponse ¶
Beta 版本
在 0.2.11 版本中添加。API 可能会发生变化。
在向量存储中添加或更新文档。 upsert 的异步版本。
如果提供了 Document 对象的 ID 字段,upsert 功能应使用该字段。如果未提供 ID,则 upsert 方法可以自由地为文档生成 ID。
当指定了 ID 并且文档已存在于向量存储中时,upsert 方法应使用新数据更新文档。如果文档不存在,则 upsert 方法应将文档添加到向量存储中。
- 参数
items (Sequence[Document]) – 要添加到向量存储的文档序列。
kwargs (Any) – 额外的关键字参数。
- 返回
响应对象,其中包含已成功添加到或更新到向量存储中的 ID 列表,以及未能添加或更新的 ID 列表。
- 返回类型
0.2.11 版本新增。
- delete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] ¶
通过向量 ID 或其他条件删除。
- 参数
ids (Optional[List[str]]) – 要删除的 ID 列表。如果为 None,则删除全部。默认为 None。
**kwargs (Any) – 子类可能使用的其他关键字参数。
- 返回
如果删除成功,则为 True,否则为 False;如果未实现,则为 None。
- 返回类型
Optional[bool]
- escape_str(value: str) str [source]¶
转义 Clickhouse SQL 查询中字符串中的特殊字符。
此方法在内部使用,通过转义可能干扰查询语法的特殊字符,为安全插入 SQL 查询准备字符串。
- 参数
value (str) – 要转义的字符串。
- 返回
转义后的字符串,可以安全地插入到 SQL 查询中。
- 返回类型
str
- classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
从文档和嵌入初始化并返回 VectorStore。
- 参数
documents (List[Document]) – 要添加到向量存储的文档列表。
embedding (Embeddings) – 要使用的嵌入函数。
kwargs (Any) – 额外的关键字参数。
- 返回
从文档和嵌入初始化的 VectorStore。
- 返回类型
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[Dict[Any, Any]]] = None, config: Optional[ClickhouseSettings] = None, text_ids: Optional[Iterable[str]] = None, batch_size: int = 32, **kwargs: Any) Clickhouse [source]¶
使用现有文本创建 ClickHouse 封装器
- 参数
embedding_function (Embeddings) – 用于提取文本嵌入的函数
texts (Iterable[str]) – 要添加的字符串列表或元组
config (ClickHouseSettings, Optional) – ClickHouse 配置
text_ids (Optional[Iterable], optional) – 文本的 ID。默认为 None。
batch_size (int, optional) – 将数据传输到 ClickHouse 时的批量大小。默认为 32。
metadata (List[dict], optional) – 文本的元数据。默认为 None。
into (其他关键字参数将传递给) – [clickhouse-connect](https://clickhouse.ac.cn/docs/en/integrations/python#clickhouse-connect-driver-api)
embedding (Embeddings) –
metadatas (Optional[List[Dict[Any, Any]]]) –
kwargs (Any) –
- 返回
ClickHouse 索引
- 返回类型
- get_by_ids(ids: Sequence[str], /) List[Document] ¶
通过 ID 获取文档。
返回的文档应将 ID 字段设置为文档在向量存储中的 ID。
如果某些 ID 未找到或存在重复的 ID,则返回的文档可能少于请求的文档。
用户不应假设返回文档的顺序与输入 ID 的顺序匹配。相反,用户应依赖返回文档的 ID 字段。
如果没有为某些 ID 找到文档,此方法不应引发异常。
- 参数
ids (Sequence[str]) – 要检索的 ID 列表。
- 返回
文档列表。
- 返回类型
List[Document]
0.2.11 版本新增。
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
返回使用最大边际相关性选择的文档。
最大边际相关性优化了与查询的相似性和所选文档之间的多样性。
- 参数
query (str) – 用于查找相似文档的文本。
k (int) – 要返回的文档数量。默认为 4。
fetch_k (int) – 要获取以传递给 MMR 算法的文档数量。默认为 20。
lambda_mult (float) – 介于 0 和 1 之间的数字,用于确定结果之间多样性的程度,其中 0 对应于最大多样性,1 对应于最小多样性。默认为 0.5。
**kwargs (Any) – 传递给搜索方法的参数。
- 返回
按最大边际相关性选择的文档列表。
- 返回类型
List[Document]
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document] ¶
返回使用最大边际相关性选择的文档。
最大边际相关性优化了与查询的相似性和所选文档之间的多样性。
- 参数
embedding (List[float]) – 用于查找相似文档的嵌入。
k (int) – 要返回的文档数量。默认为 4。
fetch_k (int) – 要获取以传递给 MMR 算法的文档数量。默认为 20。
lambda_mult (float) – 介于 0 和 1 之间的数字,用于确定结果之间多样性的程度,其中 0 对应于最大多样性,1 对应于最小多样性。默认为 0.5。
**kwargs (Any) – 传递给搜索方法的参数。
- 返回
按最大边际相关性选择的文档列表。
- 返回类型
List[Document]
- search(query: str, search_type: str, **kwargs: Any) List[Document] ¶
返回使用指定搜索类型与查询最相似的文档。
- 参数
query (str) – 输入文本
search_type (str) – 要执行的搜索类型。可以是 “similarity”、“mmr” 或 “similarity_score_threshold”。
**kwargs (Any) – 传递给搜索方法的参数。
- 返回
与查询最相似的文档列表。
- Raises
ValueError – 如果 search_type 不是 “similarity”、“mmr” 或 “similarity_score_threshold” 之一。
- 返回类型
List[Document]
- similarity_search(query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any) List[Document] [source]¶
使用 ClickHouse 执行相似性搜索
- 参数
query (str) – 查询字符串
k (int, optional) – 要检索的 Top K 个邻居。默认为 4。
where_str (Optional[str], optional) – where 条件字符串。默认为 None。
NOTE – 请勿让最终用户填写此项,并始终注意 SQL 注入。在处理元数据时,请记住使用 {self.metadata_column}.attribute 而不是单独使用 attribute。它的默认名称是 metadata。
kwargs (Any) –
- 返回
文档列表
- 返回类型
List[Document]
- similarity_search_by_vector(embedding: List[float], k: int = 4, where_str: Optional[str] = None, **kwargs: Any) List[Document] [source]¶
通过向量使用 ClickHouse 执行相似性搜索
- 参数
query (str) – 查询字符串
k (int, optional) – 要检索的 Top K 个邻居。默认为 4。
where_str (Optional[str], optional) – where 条件字符串。默认为 None。
NOTE – 请勿让最终用户填写此项,并始终注意 SQL 注入。在处理元数据时,请记住使用 {self.metadata_column}.attribute 而不是单独使用 attribute。它的默认名称是 metadata。
embedding (List[float]) –
kwargs (Any) –
- 返回
文档列表
- 返回类型
List[Document]
- similarity_search_with_relevance_scores(query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
使用 ClickHouse 执行相似性搜索
- 参数
query (str) – 查询字符串
k (int, optional) – 要检索的 Top K 个邻居。默认为 4。
where_str (Optional[str], optional) – where 条件字符串。默认为 None。
NOTE – 请勿让最终用户填写此项,并始终注意 SQL 注入。在处理元数据时,请记住使用 {self.metadata_column}.attribute 而不是单独使用 attribute。它的默认名称是 metadata。
kwargs (Any) –
- 返回
(文档,相似度)列表
- 返回类型
List[Document]
- similarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]] ¶
运行带距离的相似性搜索。
- 参数
*args (Any) – 传递给搜索方法的参数。
**kwargs (Any) – 传递给搜索方法的参数。
- 返回
(文档,相似度评分)元组的列表。
- 返回类型
List[Tuple[Document, float]]
- streaming_upsert(items: Iterable[Document], /, batch_size: int, **kwargs: Any) Iterator[UpsertResponse] ¶
Beta 版本
在 0.2.11 版本中添加。API 可能会发生变化。
以流式方式更新文档。
- 参数
items (Iterable[Document]) – 要添加到向量存储的可迭代文档。
batch_size (int) – 每次 upsert 的批量大小。
kwargs (Any) – 附加关键字参数。kwargs应该只包含所有文档通用的参数。(例如,索引超时、重试策略等)kwargs不应包含id以避免语义模糊。相反,ID应作为Document对象的一部分提供。
- Yields
UpsertResponse – 响应对象,其中包含已成功添加到或更新到向量存储中的 ID 列表,以及未能添加或更新的 ID 列表。
- 返回类型
Iterator[UpsertResponse]
0.2.11 版本新增。
- upsert(items: Sequence[Document], /, **kwargs: Any) UpsertResponse ¶
Beta 版本
在 0.2.11 版本中添加。API 可能会发生变化。
在向量存储中添加或更新文档。
如果提供了 Document 对象的 ID 字段,upsert 功能应使用该字段。如果未提供 ID,则 upsert 方法可以自由地为文档生成 ID。
当指定了 ID 并且文档已存在于向量存储中时,upsert 方法应使用新数据更新文档。如果文档不存在,则 upsert 方法应将文档添加到向量存储中。
- 参数
items (Sequence[Document]) – 要添加到向量存储的文档序列。
kwargs (Any) – 额外的关键字参数。
- 返回
响应对象,其中包含已成功添加到或更新到向量存储中的 ID 列表,以及未能添加或更新的 ID 列表。
- 返回类型
0.2.11 版本新增。