langchain_huggingface.chat_models.huggingface.ChatHuggingFace

注意

ChatHuggingFace 实现了标准的 Runnable Interface。 🏃

Runnable Interface 具有在 runnables 上可用的其他方法,例如 with_types, with_retry, assign, bind, get_graph, 等等。

class langchain_huggingface.chat_models.huggingface.ChatHuggingFace[source]

基类: BaseChatModel

Hugging Face LLM 作为 ChatModels。

HuggingFaceTextGenInferenceHuggingFaceEndpointHuggingFaceHubHuggingFacePipeline LLM 一起使用。

在实例化此类时,model_id 从提供给 LLM 的 URL 中解析,并从 HuggingFace Hub 加载相应的 tokenizer。

设置

安装 langchain-huggingface 并确保您的 Hugging Face token 已保存。

pip install langchain-huggingface
from huggingface_hub import login
login() # You will be prompted for your HF key, which will then be saved locally
关键初始化参数 — 完成参数
llm: HuggingFaceTextGenInference, HuggingFaceEndpoint, HuggingFaceHub, 或

要使用的 'HuggingFacePipeline' LLM。

关键初始化参数 — 客户端参数
custom_get_token_ids: Optional[Callable[[str], List[int]]]

用于计算 token 的可选编码器。

metadata: Optional[Dict[str, Any]]

添加到运行跟踪的元数据。

tags: Optional[List[str]]

添加到运行跟踪的标签。

tokenizer: Any verbose: bool

是否打印输出响应文本。

请参阅参数部分中受支持的初始化参数及其描述的完整列表。

实例化
from langchain_huggingface import HuggingFaceEndpoint,
ChatHuggingFace

llm = HuggingFaceEndpoint(
    repo_id="microsoft/Phi-3-mini-4k-instruct",
    task="text-generation",
    max_new_tokens=512,
    do_sample=False,
    repetition_penalty=1.03,
)

chat = ChatHuggingFace(llm=llm, verbose=True)
调用
messages = [
    ("system", "You are a helpful translator. Translate the user
    sentence to French."),
    ("human", "I love programming."),
]

chat(...).invoke(messages)
AIMessage(content='Je ai une passion pour le programme.
输入

在法语中,我们对阳性主语使用“ai”,对阴性主语使用“a”。由于“programming”在英语中是中性的,我们将使用阳性“programme”。

确认:“J’aime

le programme。” 更常用。上面的句子在技术上是准确的,但在口语法语中不太常用,因为“ai”在日常口语中不太常用。', response_metadata={'token_usage': ChatCompletionOutputUsage (completion_tokens=100, prompt_tokens=55, total_tokens=155), 'model': '', 'finish_reason': 'length'}, id='run-874c24b7-0272-4c99-b259-5d6d7facbc56-0')

流式处理
for chunk in chat.stream(messages):
    print(chunk)
content='Je ai une passion pour le programme.
在法语中,我们使用

对阳性主语使用“ai”,对阴性主语使用“a”。由于“programming”在英语中是中性的,我们将使用阳性“programme”。

确认

“J’aime le programme。” 更常用。上面的句子在技术上是准确的,但在口语法语中不太常用,因为“ai”在日常口语中不太常用。’ response_metadata={'token_usage': ChatCompletionOutputUsage (completion_tokens=100, prompt_tokens=55, total_tokens=155), 'model': '', 'finish_reason': 'length'} id='run-7d7b1967-9612-4f9a-911a-b2b5ca85046a-0'

异步
await chat.ainvoke(messages)
AIMessage(content='Je déaime le programming.
LittéraleJe

(j’aime) déaime (le) programming。

注意:“Programming”在

法语中是“programmation”。但在这里,我使用了“programming”而不是“programmation”,因为用户说的是“I love programming”而不是“I love programming (in French)”,后者是“J’aime la programmation”。通过字面翻译句子,我保留了用户句子的原始含义。', id='run-fd850318-e299-4735-b4c6-3496dc930b1d-0')

工具调用
from langchain_core.pydantic_v1 import BaseModel, Field

class GetWeather(BaseModel):
    '''Get the current weather in a given location'''

    location: str = Field(..., description="The city and state,
    e.g. San Francisco, CA")

class GetPopulation(BaseModel):
    '''Get the current population in a given location'''

    location: str = Field(..., description="The city and state,
    e.g. San Francisco, CA")

chat_with_tools = chat.bind_tools([GetWeather, GetPopulation])
ai_msg = chat_with_tools.invoke("Which city is hotter today and
which is bigger: LA or NY?")
ai_msg.tool_calls
[{'name': 'GetPopulation',
  'args': {'location': 'Los Angeles, CA'},
  'id': '0'}]
响应元数据
ai_msg = chat.invoke(messages)
ai_msg.response_metadata
param cache: Union[BaseCache, bool, None] = None

是否缓存响应。

  • 如果为 true,将使用全局缓存。

  • 如果为 false,将不使用缓存

  • 如果为 None,如果已设置全局缓存,则使用全局缓存,否则不使用缓存。

  • 如果为 BaseCache 实例,将使用提供的缓存。

模型流式处理方法目前不支持缓存。

param callback_manager: Optional[[BaseCallbackManager] = None

[已弃用] 要添加到运行跟踪的回调管理器。

param callbacks: Callbacks = None

要添加到运行跟踪的回调。

param custom_get_token_ids: Optional[Callable[[[str], List[int]]] = None

用于计算 token 的可选编码器。

param llm: Any = None

LLM,必须是 HuggingFaceTextGenInference、HuggingFaceEndpoint、HuggingFaceHub 或 HuggingFacePipeline 类型。

param metadata: Optional[Dict[str, Any]] = None

添加到运行跟踪的元数据。

param model_id: Optional[str] = None
param rate_limiter: Optional[BaseRateLimiter] = None

用于限制请求数量的可选速率限制器。

param system_message: SystemMessage = SystemMessage(content='You are a helpful, respectful, and honest assistant.')
param tags: Optional[List[str]] = None

添加到运行跟踪的标签。

param tokenizer: Any = None
param verbose: bool [Optional]

是否打印输出响应文本。

__call__(messages: List[BaseMessage], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) BaseMessage

Deprecated since version langchain-core==0.1.7: 使用 invoke 代替。

参数
返回类型

BaseMessage

async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output]

默认实现使用 asyncio.gather 并行运行 ainvoke。

batch 的默认实现非常适用于 IO 绑定的 runnables。

如果子类可以更有效地进行批量处理,则应覆盖此方法;例如,如果底层 Runnable 使用支持批量模式的 API。

参数
  • inputs (List[Input]) – Runnable 的输入列表。

  • config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – 调用 Runnable 时要使用的配置。配置支持标准键,如用于跟踪目的的“tags”、“metadata”,用于控制并行执行多少工作的“max_concurrency”以及其他键。请参阅 RunnableConfig 以获取更多详细信息。默认为 None。

  • return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。

  • kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。

返回

来自 Runnable 的输出列表。

返回类型

List[Output]

async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]]

在一系列输入上并行运行 ainvoke,并在结果完成时产生结果。

参数
  • inputs (Sequence[Input]) – Runnable 的输入列表。

  • config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – 调用 Runnable 时要使用的配置。配置支持标准键,如用于跟踪目的的“tags”、“metadata”,用于控制并行执行多少工作的“max_concurrency”以及其他键。请参阅 RunnableConfig 以获取更多详细信息。默认为 None。默认为 None。

  • return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。

  • kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。

产生

输入索引和 Runnable 输出的元组。

返回类型

AsyncIterator[Tuple[int, Union[Output, Exception]]]

async agenerate(messages: List[List[BaseMessage]], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, run_id: Optional[UUID] = None, **kwargs: Any) LLMResult

异步地将一系列提示传递给模型并返回生成结果。

此方法应针对公开批量 API 的模型使用批量调用。

当您想要以下操作时,请使用此方法:
  1. 利用批量调用,

  2. 需要从模型获得比仅仅是最佳生成值更多的输出,

  3. 构建与底层语言模型无关的链

    类型(例如,纯文本完成模型与聊天模型)。

参数
  • messages (List[List[BaseMessage]]) – 消息列表的列表。

  • stop (Optional[List[str]]) – 生成时使用的停止词。模型输出在首次出现任何这些子字符串时被截断。

  • callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 要传递的回调。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。

  • **kwargs (Any) – 任意额外的关键字参数。这些通常传递给模型提供商 API 调用。

  • tags (Optional[List[str]]) –

  • metadata (Optional[Dict[str, Any]]) –

  • run_name (Optional[str]) –

  • run_id (Optional[UUID]) –

  • **kwargs

返回

一个 LLMResult,其中包含每个输入的候选生成列表

提示和额外的模型提供商特定的输出。

返回类型

LLMResult

async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) LLMResult

异步地传递一系列提示并返回模型生成结果。

此方法应针对公开批量 API 的模型使用批量调用。

当您想要以下操作时,请使用此方法:
  1. 利用批量调用,

  2. 需要从模型获得比仅仅是最佳生成值更多的输出,

  3. 构建与底层语言模型无关的链

    类型(例如,纯文本完成模型与聊天模型)。

参数
  • prompts (List[PromptValue]) – PromptValue 列表。PromptValue 是一个可以转换为匹配任何语言模型格式的对象(纯文本生成模型的字符串和聊天模型的 BaseMessages)。

  • stop (Optional[List[str]]) – 生成时使用的停止词。模型输出在首次出现任何这些子字符串时被截断。

  • callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 要传递的回调。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。

  • **kwargs (Any) – 任意额外的关键字参数。这些通常传递给模型提供商 API 调用。

返回

一个 LLMResult,其中包含每个输入的候选生成列表

提示和额外的模型提供商特定的输出。

返回类型

LLMResult

async ainvoke(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) BaseMessage

ainvoke 的默认实现,从线程调用 invoke。

即使 Runnable 没有实现 invoke 的原生异步版本,默认实现也允许使用异步代码。

如果子类可以异步运行,则应重写此方法。

参数
  • input (LanguageModelInput) –

  • config (Optional[RunnableConfig]) –

  • stop (Optional[List[str]]) –

  • kwargs (Any) –

返回类型

BaseMessage

async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str

Deprecated since version langchain-core==0.1.7: 请使用 ainvoke 代替。

参数
  • text (str) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

返回类型

str

async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage

Deprecated since version langchain-core==0.1.7: 请使用 ainvoke 代替。

参数
  • messages (List[BaseMessage]) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

返回类型

BaseMessage

as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool

Beta

此 API 处于 Beta 阶段,将来可能会发生变化。

从 Runnable 创建一个 BaseTool。

as_tool 将从 Runnable 实例化一个具有名称、描述和 args_schema 的 BaseTool。在可能的情况下,模式是从 runnable.get_input_schema 推断出来的。或者(例如,如果 Runnable 接受字典作为输入,并且未键入特定的字典键),可以使用 args_schema 直接指定模式。您也可以传递 arg_types 以仅指定必需的参数及其类型。

参数
  • args_schema (Optional[Type[BaseModel]]) – 工具的模式。默认为 None。

  • name (Optional[str]) – 工具的名称。默认为 None。

  • description (Optional[str]) – 工具的描述。默认为 None。

  • arg_types (Optional[Dict[str, Type]]) – 参数名称到类型的字典。默认为 None。

返回

一个 BaseTool 实例。

返回类型

BaseTool

类型化字典输入

from typing import List
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda

class Args(TypedDict):
    a: int
    b: List[int]

def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))

runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

dict 输入,通过 args_schema 指定模式

from typing import Any, Dict, List
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: Dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: List[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

dict 输入,通过 arg_types 指定模式

from typing import Any, Dict, List
from langchain_core.runnables import RunnableLambda

def f(x: Dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

字符串输入

from langchain_core.runnables import RunnableLambda

def f(x: str) -> str:
    return x + "a"

def g(x: str) -> str:
    return x + "z"

runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

0.2.14 版本新增功能。

async astream(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) AsyncIterator[BaseMessageChunk]

astream 的默认实现,它调用 ainvoke。如果子类支持流式输出,则应重写此方法。

参数
  • input (LanguageModelInput) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。

  • kwargs (Any) – 要传递给 Runnable 的其他关键字参数。

  • stop (Optional[List[str]]) –

产生

Runnable 的输出。

返回类型

AsyncIterator[BaseMessageChunk]

astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]

Beta

此 API 处于 Beta 阶段,将来可能会发生变化。

生成事件流。

用于创建一个 StreamEvents 的迭代器,该迭代器提供关于 Runnable 进度的实时信息,包括来自中间结果的 StreamEvents。

StreamEvent 是一个具有以下模式的字典

  • event: str - 事件名称的格式为:

    format: on_[runnable_type]_(start|stream|end)。

  • name: str - 生成事件的 Runnable 的名称。

  • run_id: str - 随机生成的 ID,与给定 Runnable 执行相关联,该 Runnable 发出事件。作为父 Runnable 执行的一部分调用的子 Runnable 被分配其自己的唯一 ID。

    the Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.

  • parent_ids: List[str] - 生成事件的父 runnables 的 ID 列表。

    generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.

  • tags: Optional[List[str]] - 生成事件的 Runnable 的标签。

    the event.

  • metadata: Optional[Dict[str, Any]] - Runnable 的元数据

    that generated the event.

  • data: Dict[str, Any]

下面是一个表格,说明了各种链可能发出的一些事件。为了简洁起见,元数据字段已从表格中省略。链定义已包含在表格之后。

注意 此参考表适用于 V2 版本的模式。

event

name

chunk

input

output

on_chat_model_start

[模型名称]

{“messages”: [[SystemMessage, HumanMessage]]}

on_chat_model_stream

[模型名称]

AIMessageChunk(content=”hello”)

on_chat_model_end

[模型名称]

{“messages”: [[SystemMessage, HumanMessage]]}

AIMessageChunk(content=”hello world”)

on_llm_start

[模型名称]

{‘input’: ‘hello’}

on_llm_stream

[模型名称]

‘Hello’

on_llm_end

[模型名称]

‘Hello human!’

on_chain_start

format_docs

on_chain_stream

format_docs

“hello world!, goodbye world!”

on_chain_end

format_docs

[Document(…)]

“hello world!, goodbye world!”

on_tool_start

some_tool

{“x”: 1, “y”: “2”}

on_tool_end

some_tool

{“x”: 1, “y”: “2”}

on_retriever_start

[检索器名称]

{“query”: “hello”}

on_retriever_end

[检索器名称]

{“query”: “hello”}

[Document(…), ..]

on_prompt_start

[模板名称]

{“question”: “hello”}

on_prompt_end

[模板名称]

{“question”: “hello”}

ChatPromptValue(messages: [SystemMessage, …])

除了标准事件之外,用户还可以调度自定义事件(请参见下面的示例)。

自定义事件将仅在 v2 版本的 API 中显示!

自定义事件具有以下格式

属性

类型

描述

name

str

事件的用户定义名称。

data

Any

与事件关联的数据。这可以是任何内容,但我们建议使其可 JSON 序列化。

以下是与上面显示的标准事件关联的声明

format_docs:

def format_docs(docs: List[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])

format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

prompt:

template = ChatPromptTemplate.from_messages(
    [("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})

示例

from langchain_core.runnables import RunnableLambda

async def reverse(s: str) -> str:
    return s[::-1]

chain = RunnableLambda(func=reverse)

events = [
    event async for event in chain.astream_events("hello", version="v2")
]

# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]

示例:调度自定义事件

from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)
参数
  • input (Any) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。

  • version (Literal['v1', 'v2']) – 要使用的模式版本,v2v1。用户应使用 v2v1 用于向后兼容,将在 0.4.0 中弃用。在 API 稳定之前,不会分配默认值。自定义事件将仅在 v2 中显示。

  • include_names (Optional[Sequence[str]]) – 仅包括来自具有匹配名称的 runnables 的事件。

  • include_types (Optional[Sequence[str]]) – 仅包括来自具有匹配类型的 runnables 的事件。

  • include_tags (Optional[Sequence[str]]) – 仅包括来自具有匹配标签的 runnables 的事件。

  • exclude_names (Optional[Sequence[str]]) – 排除来自具有匹配名称的 runnables 的事件。

  • exclude_types (可选[Sequence[str]]) – 排除来自具有匹配类型的可运行对象的事件。

  • exclude_tags (可选[Sequence[str]]) – 排除来自具有匹配标签的可运行对象的事件。

  • kwargs (Any) – 传递给 Runnable 的附加关键字参数。这些参数将传递给 astream_log,因为此 astream_events 的实现是基于 astream_log 构建的。

产生

StreamEvents 的异步流。

Raises

NotImplementedError – 如果版本不是 v1v2

返回类型

AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]

batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output]

默认实现使用线程池执行器并行运行 invoke。

batch 的默认实现非常适用于 IO 绑定的 runnables。

如果子类可以更有效地进行批量处理,则应覆盖此方法;例如,如果底层 Runnable 使用支持批量模式的 API。

参数
  • inputs (List[Input]) –

  • config (可选[Union[RunnableConfig, List[RunnableConfig]]]) –

  • return_exceptions (bool) –

  • kwargs (可选[Any]) –

返回类型

List[Output]

batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) Iterator[[Tuple[[int, Union[[Output, Exception]]]]

并行运行 invoke 在输入列表上,并在结果完成时产生结果。

参数
  • inputs (Sequence[Input]) –

  • config (可选[Union[RunnableConfig, Sequence[RunnableConfig]]]) –

  • return_exceptions (bool) –

  • kwargs (可选[Any]) –

返回类型

Iterator[Tuple[int, Union[Output, Exception]]]

bind_tools(tools: Sequence[Union[Dict[str, Any], Type, Callable, BaseTool]], *, tool_choice: Optional[Union[dict, str, Literal[['auto', 'none']], bool]] = None, **kwargs: Any) Runnable[[Union[[PromptValue, str, Sequence[[Union[[BaseMessage, List[[str]], Tuple[[str, str]], str, Dict[[str, Any]]]]]], BaseMessage]][source]

将类似工具的对象绑定到此聊天模型。

假定模型与 OpenAI 工具调用 API 兼容。

参数
  • tools (Sequence[Union[Dict[str, Any], Type, Callable, BaseTool]]) – 要绑定到此聊天模型的工具定义列表。 支持 langchain_core.utils.function_calling.convert_to_openai_tool() 处理的任何工具定义。

  • tool_choice (可选[Union[dict, str, Literal['auto', 'none'], bool]]) – 需要模型调用的工具。 必须是单个提供的函数的名称,或 “auto” 以自动确定要调用哪个函数(如果有),或 dict 形式:{“type”: “function”, “function”: {“name”: <<tool_name>>}}。

  • **kwargs (Any) – 传递给 Runnable 构造函数的任何附加参数。

返回类型

Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], BaseMessage]

call_as_llm(message: str, stop: Optional[List[str]] = None, **kwargs: Any) str

Deprecated since version langchain-core==0.1.7: 使用 invoke 代替。

参数
  • message (str) –

  • stop (Optional[List[str]]) –

  • kwargs (Any) –

返回类型

str

configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[[Runnable[[Input, Output]], Callable[[[[]], Runnable[[Input, Output]]]]) RunnableSerializable[[Input, Output]]

配置可在运行时设置的 Runnable 的备选项。

参数
  • which (ConfigurableField) – 将用于选择备选项的 ConfigurableField 实例。

  • default_key (str) – 如果未选择备选项,则使用的默认键。 默认为 “default”。

  • prefix_keys (bool) – 是否使用 ConfigurableField id 作为键的前缀。 默认为 False。

  • **kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – 键到 Runnable 实例或返回 Runnable 实例的可调用对象的字典。

返回

配置了备选项的新 Runnable。

返回类型

RunnableSerializable[Input, Output]

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-3-sonnet-20240229"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI()
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(
        configurable={"llm": "openai"}
    ).invoke("which organization created you?").content
)
configurable_fields(**kwargs: Union[[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]]) RunnableSerializable[[Input, Output]]

在运行时配置特定的 Runnable 字段。

参数

**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – 要配置的 ConfigurableField 实例的字典。

返回

配置了字段的新 Runnable。

返回类型

RunnableSerializable[Input, Output]

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print(
    "max_tokens_20: ",
    model.invoke("tell me something about chess").content
)

# max_tokens = 200
print("max_tokens_200: ", model.with_config(
    configurable={"output_token_number": 200}
    ).invoke("tell me something about chess").content
)
generate(messages: List[List[BaseMessage]], stop: Optional[List[str]] = None, callbacks: Optional[Union[[List[[BaseCallbackHandler]], BaseCallbackManager]]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[[str, Any]]] = None, run_name: Optional[str] = None, run_id: Optional[UUID] = None, **kwargs: Any) LLMResult

将提示序列传递给模型并返回模型生成结果。

此方法应针对公开批量 API 的模型使用批量调用。

当您想要以下操作时,请使用此方法:
  1. 利用批量调用,

  2. 需要从模型获得比仅仅是最佳生成值更多的输出,

  3. 构建与底层语言模型无关的链

    类型(例如,纯文本完成模型与聊天模型)。

参数
  • messages (List[List[BaseMessage]]) – 消息列表的列表。

  • stop (Optional[List[str]]) – 生成时使用的停止词。模型输出在首次出现任何这些子字符串时被截断。

  • callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 要传递的回调。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。

  • **kwargs (Any) – 任意额外的关键字参数。这些通常传递给模型提供商 API 调用。

  • tags (Optional[List[str]]) –

  • metadata (Optional[Dict[str, Any]]) –

  • run_name (Optional[str]) –

  • run_id (Optional[UUID]) –

  • **kwargs

返回

一个 LLMResult,其中包含每个输入的候选生成列表

提示和额外的模型提供商特定的输出。

返回类型

LLMResult

generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[[List[[BaseCallbackHandler]], BaseCallbackManager]]] = None, **kwargs: Any) LLMResult

将提示序列传递给模型并返回模型生成结果。

此方法应针对公开批量 API 的模型使用批量调用。

当您想要以下操作时,请使用此方法:
  1. 利用批量调用,

  2. 需要从模型获得比仅仅是最佳生成值更多的输出,

  3. 构建与底层语言模型无关的链

    类型(例如,纯文本完成模型与聊天模型)。

参数
  • prompts (List[PromptValue]) – PromptValue 列表。PromptValue 是一个可以转换为匹配任何语言模型格式的对象(纯文本生成模型的字符串和聊天模型的 BaseMessages)。

  • stop (Optional[List[str]]) – 生成时使用的停止词。模型输出在首次出现任何这些子字符串时被截断。

  • callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 要传递的回调。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。

  • **kwargs (Any) – 任意额外的关键字参数。这些通常传递给模型提供商 API 调用。

返回

一个 LLMResult,其中包含每个输入的候选生成列表

提示和额外的模型提供商特定的输出。

返回类型

LLMResult

get_num_tokens(text: str) int

获取文本中存在的 token 数量。

用于检查输入是否适合模型的上下文窗口。

参数

text (str) – 要标记化的字符串输入。

返回

文本中的整数 token 数量。

返回类型

int

get_num_tokens_from_messages(messages: List[BaseMessage]) int

获取消息中的 token 数量。

用于检查输入是否适合模型的上下文窗口。

参数

messages (List[BaseMessage]) – 要标记化的消息输入。

返回

消息中 token 数量的总和。

返回类型

int

get_token_ids(text: str) List[int]

返回文本中 token 的有序 ID。

参数

text (str) – 要标记化的字符串输入。

返回

与文本中的 token 相对应的 ID 列表,按照它们在文本中出现的顺序排列

在文本中。

返回类型

List[int]

invoke(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) BaseMessage

将单个输入转换为输出。 重写以实现。

参数
  • input (LanguageModelInput) – Runnable 的输入。

  • config (可选[RunnableConfig]) – 调用 Runnable 时要使用的配置。 该配置支持标准键,例如用于跟踪目的的 ‘tags’、‘metadata’,用于控制并行执行多少工作的 ‘max_concurrency’,以及其他键。 请参阅 RunnableConfig 以了解更多详细信息。

  • stop (Optional[List[str]]) –

  • kwargs (Any) –

返回

Runnable 的输出。

返回类型

BaseMessage

predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str

Deprecated since version langchain-core==0.1.7: 使用 invoke 代替。

参数
  • text (str) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

返回类型

str

predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage

Deprecated since version langchain-core==0.1.7: 使用 invoke 代替。

参数
  • messages (List[BaseMessage]) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

返回类型

BaseMessage

stream(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) Iterator[BaseMessageChunk]

流的默认实现,它调用 invoke。 如果子类支持流式输出,则应重写此方法。

参数
  • input (LanguageModelInput) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。

  • kwargs (Any) – 要传递给 Runnable 的其他关键字参数。

  • stop (Optional[List[str]]) –

产生

Runnable 的输出。

返回类型

Iterator[BaseMessageChunk]

to_json() Union[SerializedConstructor, SerializedNotImplemented]

将 Runnable 序列化为 JSON。

返回

Runnable 的 JSON 可序列化表示形式。

返回类型

Union[SerializedConstructor, SerializedNotImplemented]

with_structured_output(schema: Union[Dict, Type], *, include_raw: bool = False, **kwargs: Any) Runnable[LanguageModelInput, Union[Dict, BaseModel]]

模型包装器,返回格式化为匹配给定模式的输出。

参数
  • schema (Union[Dict, Type]) –

    输出模式。可以作为以下形式传入:
    • OpenAI 函数/工具模式,

    • JSON Schema,

    • TypedDict 类(在 0.2.26 版本中添加支持),

    • 或 Pydantic 类。

    如果 schema 是 Pydantic 类,则模型输出将是该类的 Pydantic 实例,并且模型生成的字段将由 Pydantic 类验证。否则,模型输出将是 dict,并且不会被验证。有关如何正确指定 Pydantic 或 TypedDict 类的模式字段的类型和描述的更多信息,请参阅 langchain_core.utils.function_calling.convert_to_openai_tool()

    Changed in version 0.2.26: 添加了对 TypedDict 类的支持。

  • include_raw (bool) – 如果为 False,则仅返回解析后的结构化输出。如果在模型输出解析期间发生错误,则会引发错误。如果为 True,则将返回原始模型响应(BaseMessage)和解析后的模型响应。如果在输出解析期间发生错误,它将被捕获并同样返回。最终输出始终是一个包含键 “raw”、“parsed” 和 “parsing_error” 的 dict。

  • kwargs (Any) –

返回

一个 Runnable,它接受与 langchain_core.language_models.chat.BaseChatModel 相同的输入。

如果 include_raw 为 False 并且 schema 是 Pydantic 类,则 Runnable 输出 schema 的实例(即,一个 Pydantic 对象)。

否则,如果 include_raw 为 False,则 Runnable 输出一个 dict。

如果 include_raw 为 True,则 Runnable 输出一个包含以下键的 dict
  • "raw":BaseMessage

  • "parsed":如果存在解析错误,则为 None,否则类型取决于如上所述的 schema

  • "parsing_error":Optional[BaseException]

返回类型

Runnable[LanguageModelInput, Union[Dict, BaseModel]]

示例:Pydantic 模式 (include_raw=False)
from langchain_core.pydantic_v1 import BaseModel

class AnswerWithJustification(BaseModel):
    '''An answer to the user question along with justification for the answer.'''
    answer: str
    justification: str

llm = ChatModel(model="model-name", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification)

structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")

# -> AnswerWithJustification(
#     answer='They weigh the same',
#     justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )
示例:Pydantic 模式 (include_raw=True)
from langchain_core.pydantic_v1 import BaseModel

class AnswerWithJustification(BaseModel):
    '''An answer to the user question along with justification for the answer.'''
    answer: str
    justification: str

llm = ChatModel(model="model-name", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)

structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> {
#     'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
#     'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
#     'parsing_error': None
# }
示例:Dict 模式 (include_raw=False)
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.utils.function_calling import convert_to_openai_tool

class AnswerWithJustification(BaseModel):
    '''An answer to the user question along with justification for the answer.'''
    answer: str
    justification: str

dict_schema = convert_to_openai_tool(AnswerWithJustification)
llm = ChatModel(model="model-name", temperature=0)
structured_llm = llm.with_structured_output(dict_schema)

structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
# -> {
#     'answer': 'They weigh the same',
#     'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }

使用 ChatHuggingFace 的示例