langchain_community.agents.openai_assistant.base
.OpenAIAssistantV2Runnable¶
注意 (Note)
OpenAIAssistantV2Runnable 实现了标准的 Runnable 接口
。 🏃
Runnable 接口
在 runnable 上还有其他可用方法,例如 with_types
, with_retry
, assign
, bind
, get_graph
, 以及更多。
- class langchain_community.agents.openai_assistant.base.OpenAIAssistantV2Runnable[源代码]¶
-
Beta
此功能处于 Beta 阶段。它正在积极开发中,因此 API 可能会发生变化。
运行 OpenAI Assistant。
- 使用 OpenAI 工具的示例 (Example using OpenAI tools)
from langchain.agents.openai_assistant import OpenAIAssistantV2Runnable interpreter_assistant = OpenAIAssistantV2Runnable.create_assistant( name="langchain assistant", instructions="You are a personal math tutor. Write and run code to answer math questions.", tools=[{"type": "code_interpreter"}], model="gpt-4-1106-preview" ) output = interpreter_assistant.invoke({"content": "What's 10 - 4 raised to the 2.7"})
- 使用自定义工具和 AgentExecutor 的示例 (Example using custom tools and AgentExecutor)
from langchain.agents.openai_assistant import OpenAIAssistantV2Runnable from langchain.agents import AgentExecutor from langchain.tools import E2BDataAnalysisTool tools = [E2BDataAnalysisTool(api_key="...")] agent = OpenAIAssistantV2Runnable.create_assistant( name="langchain assistant e2b tool", instructions="You are a personal math tutor. Write and run code to answer math questions.", tools=tools, model="gpt-4-1106-preview", as_agent=True ) agent_executor = AgentExecutor(agent=agent, tools=tools) agent_executor.invoke({"content": "What's 10 - 4 raised to the 2.7"})
- 使用自定义工具和自定义执行的示例 (Example using custom tools and custom execution)
from langchain.agents.openai_assistant import OpenAIAssistantV2Runnable from langchain.agents import AgentExecutor from langchain_core.agents import AgentFinish from langchain.tools import E2BDataAnalysisTool tools = [E2BDataAnalysisTool(api_key="...")] agent = OpenAIAssistantV2Runnable.create_assistant( name="langchain assistant e2b tool", instructions="You are a personal math tutor. Write and run code to answer math questions.", tools=tools, model="gpt-4-1106-preview", as_agent=True ) def execute_agent(agent, tools, input): tool_map = {tool.name: tool for tool in tools} response = agent.invoke(input) while not isinstance(response, AgentFinish): tool_outputs = [] for action in response: tool_output = tool_map[action.tool].invoke(action.tool_input) tool_outputs.append({"output": tool_output, "tool_call_id": action.tool_call_id}) response = agent.invoke( { "tool_outputs": tool_outputs, "run_id": action.run_id, "thread_id": action.thread_id } ) return response response = execute_agent(agent, tools, {"content": "What's 10 - 4 raised to the 2.7"}) next_response = execute_agent(agent, tools, {"content": "now add 17.241", "thread_id": response.thread_id})
- param as_agent: bool = False¶
用作 LangChain 代理,与 AgentExecutor 兼容。(Use as a LangChain agent, compatible with the AgentExecutor.)
- param assistant_id: str [必需]¶
OpenAI assistant id。
- param async_client: Any = None¶
OpenAI 或 AzureOpenAI 异步客户端。(OpenAI or AzureOpenAI async client.)
- param check_every_ms: float = 1000.0¶
检查运行进度的频率,单位为毫秒。(Frequency with which to check run progress in ms.)
- param client: Any [可选]¶
OpenAI 或 AzureOpenAI 客户端。(OpenAI or AzureOpenAI client.)
- async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
默认实现使用 asyncio.gather 并行运行 ainvoke。(Default implementation runs ainvoke in parallel using asyncio.gather.)
batch 的默认实现非常适用于 IO 绑定 runnable。(The default implementation of batch works well for IO bound runnables.)
如果子类可以更有效地进行批处理,则应覆盖此方法;例如,如果底层 Runnable 使用支持批处理模式的 API。(Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.)
- 参数 (Parameters)
inputs (List[Input]) – Runnable 的输入列表。(A list of inputs to the Runnable.)
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – 调用 Runnable 时要使用的配置。(A config to use when invoking the Runnable.) 该配置支持标准键,如 ‘tags’、‘metadata’ 用于跟踪目的,‘max_concurrency’ 用于控制并行执行的工作量以及其他键。(The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys.) 有关更多详细信息,请参阅 RunnableConfig。(Please refer to the RunnableConfig for more details.) 默认为 None。(Defaults to None.)
return_exceptions (bool) – 是否返回异常而不是引发异常。(Whether to return exceptions instead of raising them.) 默认为 False。(Defaults to False.)
kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。(Additional keyword arguments to pass to the Runnable.)
- 返回 (Returns)
来自 Runnable 的输出列表。(A list of outputs from the Runnable.)
- 返回类型 (Return type)
List[Output]
- async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]] ¶
并行运行列表中输入的 ainvoke,并在完成后生成结果。(Run ainvoke in parallel on a list of inputs, yielding results as they complete.)
- 参数 (Parameters)
inputs (Sequence[Input]) – Runnable 的输入列表。(A list of inputs to the Runnable.)
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – 调用 Runnable 时要使用的配置。(A config to use when invoking the Runnable.) 该配置支持标准键,如 ‘tags’、‘metadata’ 用于跟踪目的,‘max_concurrency’ 用于控制并行执行的工作量以及其他键。(The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys.) 有关更多详细信息,请参阅 RunnableConfig。(Please refer to the RunnableConfig for more details.) 默认为 None。(Defaults to None.) 默认为 None。(Defaults to None.)
return_exceptions (bool) – 是否返回异常而不是引发异常。(Whether to return exceptions instead of raising them.) 默认为 False。(Defaults to False.)
kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。(Additional keyword arguments to pass to the Runnable.)
- 生成 (Yields)
输入索引和来自 Runnable 的输出的元组。(A tuple of the index of the input and the output from the Runnable.)
- 返回类型 (Return type)
AsyncIterator[Tuple[int, Union[Output, Exception]]]
- async classmethod acreate_assistant(name: str, instructions: str, tools: Sequence[Union[BaseTool, dict]], model: str, *, async_client: Optional[Union[openai.AsyncOpenAI, openai.AsyncAzureOpenAI]] = None, tool_resources: Optional[Union[AssistantToolResources, dict, NotGiven]] = None, **kwargs: Any) OpenAIAssistantRunnable [源代码]¶
创建 AsyncOpenAI Assistant 并实例化 Runnable。(Create an AsyncOpenAI Assistant and instantiate the Runnable.)
- 参数 (Parameters)
name (str) – Assistant 名称。(Assistant name.)
instructions (str) – Assistant 指令。(Assistant instructions.)
tools (Sequence[Union[BaseTool, dict]]) – Assistant 工具。(Assistant tools.) 可以以 OpenAI 格式或 BaseTools 形式传入。(Can be passed in OpenAI format or as BaseTools.)
tool_resources (Optional[Union[AssistantToolResources, dict, NotGiven]]) – Assistant 工具资源。(Assistant tool resources.) 可以以 OpenAI 格式传入 (Can be passed in OpenAI format)
model (str) – 要使用的 Assistant 模型。(Assistant model to use.)
async_client (Optional[Union[openai.AsyncOpenAI, openai.AsyncAzureOpenAI]]) – AsyncOpenAI 客户端。(AsyncOpenAI client.)
specified. (Will create default async_client if not) – (如果未指定,将创建默认 async_client。)
kwargs (Any) –
- 返回 (Returns)
AsyncOpenAIAssistantRunnable 配置为使用创建的 assistant 运行。(AsyncOpenAIAssistantRunnable configured to run using the created assistant.)
- 返回类型 (Return type)
- async ainvoke(input: dict, config: Optional[RunnableConfig] = None, **kwargs: Any) OutputType [源代码]¶
异步调用 assistant。(Async invoke assistant.)
- 参数 (Parameters)
input (dict) –
Runnable 输入字典,可以包含:content:启动新运行时用户消息。(Runnable input dict that can have: content: User message when starting a new run.) thread_id:要使用的现有线程。(thread_id: Existing thread to use.) run_id:要使用的现有运行。(run_id: Existing run to use.) 仅在为初始调用后所需的操作提供工具输出时才应提供。(Should only be supplied when providing the tool output for a required action after an initial invocation.)
file_ids:(已弃用)包含在新运行中的文件 id。(file_ids: (deprecated) File ids to include in new run.) 使用 ‘attachments’ 代替。(Use ‘attachments’ instead)
- ’attachments’ 代替 (use ‘attachments’ instead)
attachments:包含在新运行中的 Assistant 文件。(attachments: Assistant files to include in new run.) (v2 API)。message_metadata:与新消息关联的元数据。(message_metadata: Metadata to associate with new message.) thread_metadata:与新线程关联的元数据。(thread_metadata: Metadata to associate with new thread.) 仅在新线程被创建时相关。(Only relevant when new thread being created.)
当新线程被创建时相关。(when new thread being created.)
instructions:其他运行说明。(instructions: Additional run instructions.) model:覆盖此运行的 Assistant 模型。(model: Override Assistant model for this run.) tools:覆盖此运行的 Assistant 工具。(tools: Override Assistant tools for this run.) tool_resources:覆盖此运行的 Assistant 工具资源 (v2 API)。(tool_resources: Override Assistant tool resources for this run (v2 API).) run_metadata:与新运行关联的元数据。(run_metadata: Metadata to associate with new run.)
run_metadata:与新运行关联的元数据。(run_metadata: Metadata to associate with new run.)
config (Optional[RunnableConfig]) – Runnable 配置 (Runnable config)
kwargs (Any) –
- 返回 (Returns)
- 如果 self.as_agent,将返回 (If self.as_agent, will return)
Union[List[OpenAIAssistantAction], OpenAIAssistantFinish]。否则,将返回 OpenAI 类型 Union[List[ThreadMessage], List[RequiredActionFunctionToolCall]]。(Otherwise, will return OpenAI types Union[List[ThreadMessage], List[RequiredActionFunctionToolCall]].)
- 返回类型 (Return type)
OutputType
- as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool ¶
Beta
此 API 处于 Beta 阶段,将来可能会发生变化。(This API is in beta and may change in the future.)
从 Runnable 创建 BaseTool。(Create a BaseTool from a Runnable.)
as_tool
将从 Runnable 实例化具有名称、描述和args_schema
的 BaseTool。(as_tool
will instantiate a BaseTool with a name, description, andargs_schema
from a Runnable.) 在可能的情况下,模式从runnable.get_input_schema
推断。(Where possible, schemas are inferred fromrunnable.get_input_schema
.) 或者(例如,如果 Runnable 接受字典作为输入,并且未键入特定的字典键),可以使用args_schema
直接指定模式。(Alternatively (e.g., if the Runnable takes a dict as input and the specific dict keys are not typed), the schema can be specified directly withargs_schema
.) 您也可以传递arg_types
以仅指定必需的参数及其类型。(You can also passarg_types
to just specify the required arguments and their types.)- 参数 (Parameters)
args_schema (Optional[Type[BaseModel]]) – 工具的模式。(The schema for the tool.) 默认为 None。(Defaults to None.)
name (Optional[str]) – 工具的名称。(The name of the tool.) 默认为 None。(Defaults to None.)
description (Optional[str]) – 工具的描述。(The description of the tool.) 默认为 None。(Defaults to None.)
arg_types (Optional[Dict[str, Type]]) – 参数名称到类型的字典。(A dictionary of argument names to types.) 默认为 None。(Defaults to None.)
- 返回 (Returns)
BaseTool 实例。(A BaseTool instance.)
- 返回类型 (Return type)
类型化字典输入 (Typed dict input)
from typing import List from typing_extensions import TypedDict from langchain_core.runnables import RunnableLambda class Args(TypedDict): a: int b: List[int] def f(x: Args) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool() as_tool.invoke({"a": 3, "b": [1, 2]})
dict
输入,通过args_schema
指定模式 (dict
input, specifying schema viaargs_schema
)from typing import Any, Dict, List from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) class FSchema(BaseModel): """Apply a function to an integer and list of integers.""" a: int = Field(..., description="Integer") b: List[int] = Field(..., description="List of ints") runnable = RunnableLambda(f) as_tool = runnable.as_tool(FSchema) as_tool.invoke({"a": 3, "b": [1, 2]})
dict
输入,通过arg_types
指定模式 (dict
input, specifying schema viaarg_types
)from typing import Any, Dict, List from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]}) as_tool.invoke({"a": 3, "b": [1, 2]})
字符串输入 (String input)
from langchain_core.runnables import RunnableLambda def f(x: str) -> str: return x + "a" def g(x: str) -> str: return x + "z" runnable = RunnableLambda(f) | g as_tool = runnable.as_tool() as_tool.invoke("b")
0.2.14 版本中的新增功能。(New in version 0.2.14.)
- async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output] ¶
astream 的默认实现,它调用 ainvoke。(Default implementation of astream, which calls ainvoke.) 如果子类支持流式输出,则应覆盖此方法。(Subclasses should override this method if they support streaming output.)
- 参数 (Parameters)
input (Input) – Runnable 的输入。(The input to the Runnable.)
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。(The config to use for the Runnable.) 默认为 None。(Defaults to None.)
kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。(Additional keyword arguments to pass to the Runnable.)
- 生成 (Yields)
Runnable 的输出。(The output of the Runnable.)
- 返回类型 (Return type)
AsyncIterator[Output]
- astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]] ¶
Beta
此 API 处于 Beta 阶段,将来可能会发生变化。(This API is in beta and may change in the future.)
生成事件流。
用于创建一个迭代器,遍历 StreamEvents,这些 StreamEvents 提供关于 Runnable 进度的实时信息,包括来自中间结果的 StreamEvents。
StreamEvent 是一个具有以下模式的字典
event
: str - 事件名称的格式为:格式:on_[runnable_type]_(start|stream|end)。
name
: str - 生成事件的 Runnable 的名称。run_id
: str - 随机生成的 ID,与给定 Runnable 执行相关联,该 Runnable 发出了事件。作为父 Runnable 执行一部分而被调用的子 Runnable 会被分配其自己唯一的 ID。Runnable 发出事件的给定执行的关联随机生成 ID。作为父 Runnable 执行的一部分而调用的子 Runnable 将被分配其唯一的 ID。
parent_ids
: List[str] - 生成事件的父 runnables 的 ID 列表。根 Runnable 将有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。
tags
: Optional[List[str]] - 生成事件的 Runnable 的标签。事件的标签。
metadata
: Optional[Dict[str, Any]] - 生成事件的 Runnable 的元数据。生成事件的元数据。
data
: Dict[str, Any]
下面是一个表格,说明了各种链可能发出的一些事件。为了简洁起见,元数据字段已从表格中省略。链定义已包含在表格之后。
注意 此参考表适用于 V2 版本的模式。
event
name
chunk
input
output
on_chat_model_start
[模型名称]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[模型名称]
AIMessageChunk(content=”hello”)
on_chat_model_end
[模型名称]
{“messages”: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=”hello world”)
on_llm_start
[模型名称]
{‘input’: ‘hello’}
on_llm_stream
[模型名称]
‘Hello’
on_llm_end
[模型名称]
‘Hello human!’
on_chain_start
format_docs
on_chain_stream
format_docs
“hello world!, goodbye world!”
on_chain_end
format_docs
[Document(…)]
“hello world!, goodbye world!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[检索器名称]
{“query”: “hello”}
on_retriever_end
[检索器名称]
{“query”: “hello”}
[Document(…), ..]
on_prompt_start
[模板名称]
{“question”: “hello”}
on_prompt_end
[模板名称]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
除了标准事件之外,用户还可以分派自定义事件(请参见下面的示例)。
自定义事件将仅在 API 的 v2 版本中显示!
自定义事件具有以下格式
属性
类型
描述
name
str
用户为事件定义的名称。
data
Any
与事件关联的数据。这可以是任何内容,但我们建议使其可 JSON 序列化。
以下是与上面显示的标准事件相关的声明
format_docs:
def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool:
@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
prompt:
template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
示例
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
示例:分派自定义事件
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- 参数 (Parameters)
input (Any) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。
version (Literal['v1', 'v2']) – 要使用的模式版本,可以是 v2 或 v1。用户应使用 v2。v1 用于向后兼容,将在 0.4.0 中弃用。在 API 稳定之前,不会分配默认值。自定义事件将仅在 v2 中显示。
include_names (Optional[Sequence[str]]) – 仅包括来自具有匹配名称的 runnables 的事件。
include_types (Optional[Sequence[str]]) – 仅包括来自具有匹配类型的 runnables 的事件。
include_tags (Optional[Sequence[str]]) – 仅包括来自具有匹配标签的 runnables 的事件。
exclude_names (Optional[Sequence[str]]) – 排除来自具有匹配名称的 runnables 的事件。
exclude_types (Optional[Sequence[str]]) – 排除来自具有匹配类型的 runnables 的事件。
exclude_tags (Optional[Sequence[str]]) – 排除来自具有匹配标签的 runnables 的事件。
kwargs (Any) – 传递给 Runnable 的其他关键字参数。这些将传递给 astream_log,因为此 astream_events 的实现构建于 astream_log 之上。
- 生成 (Yields)
StreamEvents 的异步流。
- Raises
NotImplementedError – 如果版本不是 v1 或 v2。
- 返回类型 (Return type)
AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]
- batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
默认实现使用线程池执行器并行运行 invoke。
batch 的默认实现非常适用于 IO 绑定 runnable。(The default implementation of batch works well for IO bound runnables.)
如果子类可以更有效地进行批处理,则应覆盖此方法;例如,如果底层 Runnable 使用支持批处理模式的 API。(Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.)
- 参数 (Parameters)
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- 返回类型 (Return type)
List[Output]
- batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) Iterator[Tuple[int, Union[Output, Exception]]] ¶
并行运行列表中输入的 invoke,并在完成时产生结果。
- 参数 (Parameters)
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- 返回类型 (Return type)
Iterator[Tuple[int, Union[Output, Exception]]]
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output] ¶
配置可在运行时设置的 Runnables 的备选项。
- 参数 (Parameters)
which (ConfigurableField) – 将用于选择备选项的 ConfigurableField 实例。
default_key (str) – 如果未选择备选项,则使用的默认键。默认为“default”。
prefix_keys (bool) – 是否用 ConfigurableField id 作为键的前缀。默认为 False。
**kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – 键到 Runnable 实例或返回 Runnable 实例的可调用对象的字典。
- 返回 (Returns)
配置了备选项的新 Runnable。
- 返回类型 (Return type)
RunnableSerializable[Input, Output]
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content )
- configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output] ¶
在运行时配置特定的 Runnable 字段。
- 参数 (Parameters)
**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – 要配置的 ConfigurableField 实例的字典。
- 返回 (Returns)
配置了字段的新 Runnable。
- 返回类型 (Return type)
RunnableSerializable[Input, Output]
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content )
- classmethod create_assistant(name: str, instructions: str, tools: Sequence[Union[BaseTool, dict]], model: str, *, client: Optional[Union[openai.OpenAI, openai.AzureOpenAI]] = None, tool_resources: Optional[Union[AssistantToolResources, dict, NotGiven]] = None, **kwargs: Any) OpenAIAssistantRunnable [source]¶
创建一个 OpenAI Assistant 并实例化 Runnable。
- 参数 (Parameters)
name (str) – Assistant 名称。(Assistant name.)
instructions (str) – Assistant 指令。(Assistant instructions.)
tools (Sequence[Union[BaseTool, dict]]) – Assistant 工具。(Assistant tools.) 可以以 OpenAI 格式或 BaseTools 形式传入。(Can be passed in OpenAI format or as BaseTools.)
tool_resources (Optional[Union[AssistantToolResources, dict, NotGiven]]) – Assistant 工具资源。(Assistant tool resources.) 可以以 OpenAI 格式传入 (Can be passed in OpenAI format)
model (str) – 要使用的 Assistant 模型。(Assistant model to use.)
client (Optional[Union[openai.OpenAI, openai.AzureOpenAI]]) – OpenAI 或 AzureOpenAI 客户端。如果未指定,将创建默认的 OpenAI 客户端 (Assistant v2)。
kwargs (Any) –
- 返回 (Returns)
配置为使用创建的助手运行的 OpenAIAssistantRunnable。
- 返回类型 (Return type)
- invoke(input: dict, config: Optional[RunnableConfig] = None, **kwargs: Any) OutputType [source]¶
调用助手。
- 参数 (Parameters)
input (dict) –
Runnable 输入字典,可以包含:content:启动新运行时用户消息。(Runnable input dict that can have: content: User message when starting a new run.) thread_id:要使用的现有线程。(thread_id: Existing thread to use.) run_id:要使用的现有运行。(run_id: Existing run to use.) 仅在为初始调用后所需的操作提供工具输出时才应提供。(Should only be supplied when providing the tool output for a required action after an initial invocation.)
file_ids:(已弃用)包含在新运行中的文件 id。(file_ids: (deprecated) File ids to include in new run.) 使用 ‘attachments’ 代替。(Use ‘attachments’ instead)
- ’attachments’ 代替 (use ‘attachments’ instead)
attachments:包含在新运行中的 Assistant 文件。(attachments: Assistant files to include in new run.) (v2 API)。message_metadata:与新消息关联的元数据。(message_metadata: Metadata to associate with new message.) thread_metadata:与新线程关联的元数据。(thread_metadata: Metadata to associate with new thread.) 仅在新线程被创建时相关。(Only relevant when new thread being created.)
当新线程被创建时相关。(when new thread being created.)
instructions:其他运行说明。(instructions: Additional run instructions.) model:覆盖此运行的 Assistant 模型。(model: Override Assistant model for this run.) tools:覆盖此运行的 Assistant 工具。(tools: Override Assistant tools for this run.) tool_resources:覆盖此运行的 Assistant 工具资源 (v2 API)。(tool_resources: Override Assistant tool resources for this run (v2 API).) run_metadata:与新运行关联的元数据。(run_metadata: Metadata to associate with new run.)
run_metadata:与新运行关联的元数据。(run_metadata: Metadata to associate with new run.)
config (Optional[RunnableConfig]) – Runnable 配置 (Runnable config)
kwargs (Any) –
- 返回 (Returns)
- 如果 self.as_agent,将返回 (If self.as_agent, will return)
Union[List[OpenAIAssistantAction], OpenAIAssistantFinish]。否则,将返回 OpenAI 类型 Union[List[ThreadMessage], List[RequiredActionFunctionToolCall]]。(Otherwise, will return OpenAI types Union[List[ThreadMessage], List[RequiredActionFunctionToolCall]].)
- Raises
BaseException – 如果在调用期间发生错误。
- 返回类型 (Return type)
OutputType
- stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) Iterator[Output] ¶
流的默认实现,它调用 invoke。如果子类支持流式输出,则应重写此方法。
- 参数 (Parameters)
input (Input) – Runnable 的输入。(The input to the Runnable.)
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。(The config to use for the Runnable.) 默认为 None。(Defaults to None.)
kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。(Additional keyword arguments to pass to the Runnable.)
- 生成 (Yields)
Runnable 的输出。(The output of the Runnable.)
- 返回类型 (Return type)
Iterator[Output]
- to_json() Union[SerializedConstructor, SerializedNotImplemented] ¶
将 Runnable 序列化为 JSON。
- 返回 (Returns)
Runnable 的 JSON 序列化表示形式。
- 返回类型 (Return type)