langchain.agents.openai_assistant.base.OpenAIAssistantRunnable

注意

OpenAIAssistantRunnable 实现了标准的 Runnable 接口。 🏃

Runnable 接口 还有其他可在 runnable 上使用的方法,例如 with_typeswith_retryassignbindget_graph 等。

class langchain.agents.openai_assistant.base.OpenAIAssistantRunnable[source]

基类: RunnableSerializable[Dict, Union[List[OpenAIAssistantAction], OpenAIAssistantFinish, List[ThreadMessage], List[RequiredActionFunctionToolCall]]]

运行 OpenAI Assistant。

使用 OpenAI 工具的示例
from langchain_experimental.openai_assistant import OpenAIAssistantRunnable

interpreter_assistant = OpenAIAssistantRunnable.create_assistant(
    name="langchain assistant",
    instructions="You are a personal math tutor. Write and run code to answer math questions.",
    tools=[{"type": "code_interpreter"}],
    model="gpt-4-1106-preview"
)
output = interpreter_assistant.invoke({"content": "What's 10 - 4 raised to the 2.7"})
使用自定义工具和 AgentExecutor 的示例
from langchain_experimental.openai_assistant import OpenAIAssistantRunnable
from langchain.agents import AgentExecutor
from langchain.tools import E2BDataAnalysisTool


tools = [E2BDataAnalysisTool(api_key="...")]
agent = OpenAIAssistantRunnable.create_assistant(
    name="langchain assistant e2b tool",
    instructions="You are a personal math tutor. Write and run code to answer math questions.",
    tools=tools,
    model="gpt-4-1106-preview",
    as_agent=True
)

agent_executor = AgentExecutor(agent=agent, tools=tools)
agent_executor.invoke({"content": "What's 10 - 4 raised to the 2.7"})
使用自定义工具和自定义执行的示例
from langchain_experimental.openai_assistant import OpenAIAssistantRunnable
from langchain.agents import AgentExecutor
from langchain_core.agents import AgentFinish
from langchain.tools import E2BDataAnalysisTool


tools = [E2BDataAnalysisTool(api_key="...")]
agent = OpenAIAssistantRunnable.create_assistant(
    name="langchain assistant e2b tool",
    instructions="You are a personal math tutor. Write and run code to answer math questions.",
    tools=tools,
    model="gpt-4-1106-preview",
    as_agent=True
)

def execute_agent(agent, tools, input):
    tool_map = {tool.name: tool for tool in tools}
    response = agent.invoke(input)
    while not isinstance(response, AgentFinish):
        tool_outputs = []
        for action in response:
            tool_output = tool_map[action.tool].invoke(action.tool_input)
            tool_outputs.append({"output": tool_output, "tool_call_id": action.tool_call_id})
        response = agent.invoke(
            {
                "tool_outputs": tool_outputs,
                "run_id": action.run_id,
                "thread_id": action.thread_id
            }
        )

    return response

response = execute_agent(agent, tools, {"content": "What's 10 - 4 raised to the 2.7"})
next_response = execute_agent(agent, tools, {"content": "now add 17.241", "thread_id": response.thread_id})
param as_agent: bool = False

用作 LangChain agent,与 AgentExecutor 兼容。

param assistant_id: str [必需]

OpenAI assistant ID。

param async_client: Any = None

OpenAI 或 AzureOpenAI 异步客户端。

param check_every_ms: float = 1000.0

以毫秒为单位检查运行进度的频率。

param client: Any [可选]

OpenAI 或 AzureOpenAI 客户端。

async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output]

默认实现使用 asyncio.gather 并行运行 ainvoke。

batch 的默认实现适用于 IO 绑定的 runnables。

如果子类可以更高效地进行批量处理,则应重写此方法;例如,如果底层 Runnable 使用支持批量模式的 API。

参数
  • inputs (List[Input]) – Runnable 的输入列表。

  • config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – 调用 Runnable 时使用的配置。该配置支持标准键,如用于跟踪目的的 ‘tags’、‘metadata’,用于控制并行执行工作量的 ‘max_concurrency’,以及其他键。有关更多详细信息,请参阅 RunnableConfig。默认为 None。

  • return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。

  • kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。

返回值

Runnable 的输出列表。

返回类型

List[Output]

async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]]

并行运行输入列表上的 ainvoke,并在完成时产生结果。

参数
  • inputs (Sequence[Input]) – Runnable 的输入列表。

  • config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – 调用 Runnable 时使用的配置。该配置支持标准键,如用于跟踪目的的 ‘tags’、‘metadata’,用于控制并行执行工作量的 ‘max_concurrency’,以及其他键。有关更多详细信息,请参阅 RunnableConfig。默认为 None。

  • return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。

  • kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。

产生

输入索引和 Runnable 输出的元组。

返回类型

AsyncIterator[Tuple[int, Union[Output, Exception]]]

async classmethod acreate_assistant(name: str, instructions: str, tools: Sequence[Union[BaseTool, dict]], model: str, *, async_client: Optional[Union[openai.AsyncOpenAI, openai.AsyncAzureOpenAI]] = None, **kwargs: Any) OpenAIAssistantRunnable[source]

异步创建 AsyncOpenAI Assistant 并实例化 Runnable。

参数
  • name (str) – Assistant 名称。

  • instructions (str) – Assistant 指令。

  • tools (Sequence[Union[BaseTool, dict]]) – Assistant 工具。可以以 OpenAI 格式或 BaseTools 形式传递。

  • model (str) – 要使用的 Assistant 模型。

  • async_client (Optional[Union[openai.AsyncOpenAI, openai.AsyncAzureOpenAI]]) – AsyncOpenAI 客户端。如果未指定,将创建默认的 async_client。

  • kwargs (Any) –

返回值

配置为使用创建的 assistant 运行的 AsyncOpenAIAssistantRunnable。

返回类型

OpenAIAssistantRunnable

async ainvoke(input: dict, config: Optional[RunnableConfig] = None, **kwargs: Any) OutputType[source]

异步调用 assistant。

参数
  • input (dict) –

    Runnable 输入字典,可以包含:content:启动新运行时用户的消息。thread_id:要使用的现有线程。run_id:要使用的现有运行。仅在提供时才应提供

    初始调用后所需操作的工具输出。

    file_ids:要包含在新运行中的文件 ID。用于检索。message_metadata:与新消息关联的元数据。thread_metadata:与新线程关联的元数据。仅在以下情况下相关

    创建新线程时。

    instructions:其他运行指令。model:覆盖此运行的 Assistant 模型。tools:覆盖此运行的 Assistant 工具。run_metadata:与新运行关联的元数据。

  • config (Optional[RunnableConfig]) – Runnable 配置。默认为 None。

  • kwargs (Any) – 其他参数。

返回值

如果 self.as_agent,将返回

Union[List[OpenAIAssistantAction], OpenAIAssistantFinish]。否则,将返回 OpenAI 类型 Union[List[ThreadMessage], List[RequiredActionFunctionToolCall]]。

返回类型

OutputType

as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool

Beta

此 API 处于 beta 阶段,将来可能会发生更改。

从 Runnable 创建 BaseTool。

as_tool 将从 Runnable 实例化一个具有名称、描述和 args_schema 的 BaseTool。在可能的情况下,架构是从 runnable.get_input_schema 推断出来的。或者(例如,如果 Runnable 接受 dict 作为输入,并且未对特定的 dict 键进行类型化),可以使用 args_schema 直接指定架构。您也可以传递 arg_types 来仅指定必需的参数及其类型。

参数
  • args_schema (Optional[Type[BaseModel]]) – 工具的架构。默认为 None。

  • name (Optional[str]) – 工具的名称。默认为 None。

  • description (Optional[str]) – 工具的描述。默认为 None。

  • arg_types (Optional[Dict[str, Type]]) – 参数名称到类型的字典。默认为 None。

返回值

BaseTool 实例。

返回类型

BaseTool

类型化字典输入

from typing import List
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda

class Args(TypedDict):
    a: int
    b: List[int]

def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))

runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

字典输入,通过 args_schema 指定架构

from typing import Any, Dict, List
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: Dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: List[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

字典输入,通过 arg_types 指定架构

from typing import Any, Dict, List
from langchain_core.runnables import RunnableLambda

def f(x: Dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

字符串输入

from langchain_core.runnables import RunnableLambda

def f(x: str) -> str:
    return x + "a"

def g(x: str) -> str:
    return x + "z"

runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

0.2.14 版本新增。

async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output]

astream 的默认实现,它调用 ainvoke。如果子类支持流式输出,则应重写此方法。

参数
  • input (Input) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。

  • kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。

产生

Runnable 的输出。

返回类型

AsyncIterator[Output]

astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]

Beta

此 API 处于 beta 阶段,将来可能会发生更改。

生成事件流。

使用此方法创建一个迭代器,用于遍历 StreamEvents,这些 StreamEvents 提供有关 Runnable 进度的实时信息,包括来自中间结果的 StreamEvents。

StreamEvent 是一个具有以下模式的字典

  • event: str - 事件名称的格式为

    格式:on_[runnable_type]_(start|stream|end)。

  • name: str - 生成事件的 Runnable 的名称。

  • run_id: str - 随机生成的 ID,与给定 Runnable 的执行关联,该 Runnable 发出事件。作为父 Runnable 执行的一部分被调用的子 Runnable 将被分配其自己唯一的 ID。

    Runnable 的执行,该 Runnable 发出事件。作为父 Runnable 执行的一部分被调用的子 Runnable 将被分配其自己唯一的 ID。

  • parent_ids: List[str] - 生成事件的父 Runnables 的 ID。

    生成事件的父 Runnables 的 ID。根 Runnable 将具有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。

  • tags: Optional[List[str]] - 生成事件的 Runnable 的标签。

    生成事件的 Runnable 的标签。

  • metadata: Optional[Dict[str, Any]] - 生成事件的 Runnable 的元数据

    生成事件的 Runnable 的元数据。

  • data: Dict[str, Any]

下面是一个表格,说明了各种链可能发出的一些事件。为了简洁起见,表格中省略了元数据字段。链定义已包含在表格之后。

注意 此参考表适用于 V2 版本的架构。

事件

名称

输入

输出

on_chat_model_start

[模型名称]

{“messages”: [[SystemMessage, HumanMessage]]}

on_chat_model_stream

[模型名称]

AIMessageChunk(content=”hello”)

on_chat_model_end

[模型名称]

{“messages”: [[SystemMessage, HumanMessage]]}

AIMessageChunk(content=”hello world”)

on_llm_start

[模型名称]

{‘input’: ‘hello’}

on_llm_stream

[模型名称]

‘Hello’

on_llm_end

[模型名称]

‘Hello human!’

on_chain_start

format_docs

on_chain_stream

format_docs

“hello world!, goodbye world!”

on_chain_end

format_docs

[Document(…)]

“hello world!, goodbye world!”

on_tool_start

some_tool

{“x”: 1, “y”: “2”}

on_tool_end

some_tool

{“x”: 1, “y”: “2”}

on_retriever_start

[检索器名称]

{“query”: “hello”}

on_retriever_end

[检索器名称]

{“query”: “hello”}

[Document(…), ..]

on_prompt_start

[模板名称]

{“question”: “hello”}

on_prompt_end

[模板名称]

{“question”: “hello”}

ChatPromptValue(messages: [SystemMessage, …])

除了标准事件之外,用户还可以调度自定义事件(请参阅下面的示例)。

自定义事件将仅在 API 的 v2 版本中显示!

自定义事件具有以下格式

属性

类型

描述

名称

str

用户为事件定义的名称。

数据

Any

与事件关联的数据。这可以是任何内容,但我们建议使其可 JSON 序列化。

以下是与上面显示的标准事件关联的声明

format_docs:

def format_docs(docs: List[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])

format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

提示:

template = ChatPromptTemplate.from_messages(
    [("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})

示例

from langchain_core.runnables import RunnableLambda

async def reverse(s: str) -> str:
    return s[::-1]

chain = RunnableLambda(func=reverse)

events = [
    event async for event in chain.astream_events("hello", version="v2")
]

# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]

示例:调度自定义事件

from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)
参数
  • input (Any) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。

  • version (Literal['v1', 'v2']) – 要使用的架构版本,v2v1。用户应使用 v2v1 用于向后兼容,将在 0.4.0 中弃用。在 API 稳定之前,不会分配默认值。自定义事件将仅在 v2 中显示。

  • include_names (Optional[Sequence[str]]) – 仅包括来自具有匹配名称的 runnables 的事件。

  • include_types (Optional[Sequence[str]]) – 仅包括来自具有匹配类型的 runnables 的事件。

  • include_tags (Optional[Sequence[str]]) – 仅包括来自具有匹配标签的 runnables 的事件。

  • exclude_names (Optional[Sequence[str]]) – 排除来自具有匹配名称的 runnables 的事件。

  • exclude_types (Optional[Sequence[str]]) – 排除来自具有匹配类型的 runnables 的事件。

  • exclude_tags (Optional[Sequence[str]]) – 排除来自具有匹配标签的 runnables 的事件。

  • kwargs (Any) – 要传递给 Runnable 的其他关键字参数。这些将传递给 astream_log,因为此 astream_events 的实现构建在 astream_log 之上。

产生

StreamEvents 的异步流。

引发

NotImplementedError – 如果版本不是 v1v2

返回类型

AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]

batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output]

默认实现使用线程池执行器并行运行 invoke。

batch 的默认实现适用于 IO 绑定的 runnables。

如果子类可以更高效地进行批量处理,则应重写此方法;例如,如果底层 Runnable 使用支持批量模式的 API。

参数
  • inputs (List[Input]) –

  • config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –

  • return_exceptions (bool) –

  • kwargs (Optional[Any]) –

返回类型

List[Output]

batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) Iterator[Tuple[int, Union[Output, Exception]]]

并行运行列表中输入的 invoke,并在完成时生成结果。

参数
  • inputs (Sequence[Input]) –

  • config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –

  • return_exceptions (bool) –

  • kwargs (Optional[Any]) –

返回类型

Iterator[Tuple[int, Union[Output, Exception]]]

configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output]

配置可在运行时设置的 Runnables 的备选项。

参数
  • which (ConfigurableField) – 将用于选择备选项的 ConfigurableField 实例。

  • default_key (str) – 如果未选择备选项,则使用的默认键。默认为“default”。

  • prefix_keys (bool) – 是否为键添加 ConfigurableField id 前缀。默认为 False。

  • **kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – 键到 Runnable 实例或返回 Runnable 实例的可调用对象的字典。

返回值

配置了备选项的新 Runnable。

返回类型

RunnableSerializable[Input, Output]

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-3-sonnet-20240229"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI()
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(
        configurable={"llm": "openai"}
    ).invoke("which organization created you?").content
)
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output]

在运行时配置特定的 Runnable 字段。

参数

**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – 要配置的 ConfigurableField 实例的字典。

返回值

配置了字段的新 Runnable。

返回类型

RunnableSerializable[Input, Output]

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print(
    "max_tokens_20: ",
    model.invoke("tell me something about chess").content
)

# max_tokens = 200
print("max_tokens_200: ", model.with_config(
    configurable={"output_token_number": 200}
    ).invoke("tell me something about chess").content
)
classmethod create_assistant(name: str, instructions: str, tools: Sequence[Union[BaseTool, dict]], model: str, *, client: Optional[Union[openai.OpenAI, openai.AzureOpenAI]] = None, **kwargs: Any) OpenAIAssistantRunnable[source]

创建一个 OpenAI Assistant 并实例化 Runnable。

参数
  • name (str) – Assistant 名称。

  • instructions (str) – Assistant 指令。

  • tools (Sequence[Union[BaseTool, dict]]) – Assistant 工具。可以以 OpenAI 格式或 BaseTools 形式传递。

  • model (str) – 要使用的 Assistant 模型。

  • client (Optional[Union[openai.OpenAI, openai.AzureOpenAI]]) – OpenAI 或 AzureOpenAI 客户端。如果未指定,将创建一个默认的 OpenAI 客户端。

  • kwargs (Any) – 其他参数。

返回值

OpenAIAssistantRunnable 配置为使用创建的 assistant 运行。

返回类型

OpenAIAssistantRunnable

invoke(input: dict, config: Optional[RunnableConfig] = None) OutputType[source]

调用 assistant。

参数
  • input (dict) –

    Runnable 输入字典,可以包含:content:启动新运行时用户的消息。thread_id:要使用的现有线程。run_id:要使用的现有运行。仅在提供时才应提供

    初始调用后所需操作的工具输出。

    file_ids:要包含在新运行中的文件 ID。用于检索。 message_metadata:要与新消息关联的元数据。 thread_metadata:要与新线程关联的元数据。仅在

    创建新线程时相关。

    instructions:其他运行指令。model:覆盖此运行的 Assistant 模型。tools:覆盖此运行的 Assistant 工具。run_metadata:与新运行关联的元数据。

  • config (Optional[RunnableConfig]) – Runnable 配置。默认为 None。

返回值

如果 self.as_agent,将返回

Union[List[OpenAIAssistantAction], OpenAIAssistantFinish]。否则,将返回 OpenAI 类型 Union[List[ThreadMessage], List[RequiredActionFunctionToolCall]]。

返回类型

OutputType

stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) Iterator[Output]

stream 的默认实现,它调用 invoke。如果子类支持流式输出,则应覆盖此方法。

参数
  • input (Input) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。

  • kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。

产生

Runnable 的输出。

返回类型

Iterator[Output]

to_json() Union[SerializedConstructor, SerializedNotImplemented]

将 Runnable 序列化为 JSON。

返回值

Runnable 的 JSON 可序列化表示形式。

返回类型

Union[SerializedConstructor, SerializedNotImplemented]