langchain_postgres.vectorstores
.PGVector¶
- class langchain_postgres.vectorstores.PGVector(embeddings: Embeddings, *, connection: Union[None, Engine, str, AsyncEngine] = None, embedding_length: Optional[int] = None, collection_name: str = 'langchain', collection_metadata: Optional[dict] = None, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, pre_delete_collection: bool = False, logger: Optional[Logger] = None, relevance_score_fn: Optional[Callable[[float], float]] = None, engine_args: Optional[dict[str, Any]] = None, use_jsonb: bool = True, create_extension: bool = True, async_mode: bool = False)[source]¶
Vectorstore implementation using Postgres as the backend.
Currently, there is no mechanism for supporting data migration.
So breaking changes in the vectorstore schema will require the user to recreate the tables and re-add the documents.
If this is a concern, please use a different vectorstore. If not, this implementation should be fine for your use case.
To use this vectorstore you need to have the vector extension installed. The vector extension is a Postgres extension that provides vector similarity search capabilities.
```sh docker run –name pgvector-container -e POSTGRES_PASSWORD=…
-d pgvector/pgvector:pg16
Example
from langchain_postgres.vectorstores import PGVector from langchain_openai.embeddings import OpenAIEmbeddings connection_string = "postgresql+psycopg://..." collection_name = "state_of_the_union_test" embeddings = OpenAIEmbeddings() vectorstore = PGVector.from_documents( embedding=embeddings, documents=docs, connection=connection_string, collection_name=collection_name, use_jsonb=True, async_mode=False, )
This code has been ported over from langchain_community with minimal changes to allow users to easily transition from langchain_community to langchain_postgres.
Some changes had to be made to address issues with the community implementation: * langchain_postgres now works with psycopg3. Please update your
connection strings from postgresql+psycopg2://… to postgresql+psycopg://langchain:langchain@… (yes, the driver name is psycopg not psycopg3)
The schema of the embedding store and collection have been changed to make add_documents work correctly with user specified ids, specifically when overwriting existing documents. You will need to recreate the tables if you are using an existing database.
A Connection object has to be provided explicitly. Connections will not be picked up automatically based on env variables.
- langchain_postgres now accept async connections. If you want to use the async
version, you need to set async_mode=True when initializing the store or use an async engine.
Supported filter operators:
$eq: Equality operator
$ne: Not equal operator
$lt: Less than operator
$lte: Less than or equal operator
$gt: Greater than operator
$gte: Greater than or equal operator
$in: In operator
$nin: Not in operator
$between: Between operator
$exists: Exists operator
$like: Like operator
$ilike: Case insensitive like operator
$and: Logical AND operator
$or: Logical OR operator
$not: Logical NOT operator
Example:
vectorstore.similarity_search('kitty', k=10, filter={ 'id': {'$in': [1, 5, 2, 9]} }) #%% md If you provide a dict with multiple fields, but no operators, the top level will be interpreted as a logical **AND** filter vectorstore.similarity_search('ducks', k=10, filter={ 'id': {'$in': [1, 5, 2, 9]}, 'location': {'$in': ["pond", "market"]} })
Initialize the PGVector store. For an async version, use PGVector.acreate() instead.
- Parameters
connection (Union[None, DBConnection, Engine, AsyncEngine, str]) – Postgres connection string or (async)engine.
embeddings (Embeddings) – Any embedding function implementing langchain.embeddings.base.Embeddings interface.
embedding_length (Optional[int]) – The length of the embedding vector. (default: None) NOTE: This is not mandatory. Defining it will prevent vectors of any other size to be added to the embeddings table but, without it, the embeddings can’t be indexed.
collection_name (str) – The name of the collection to use. (default: langchain) NOTE: This is not the name of the table, but the name of the collection. The tables will be created when initializing the store (if not exists) So, make sure the user has the right permissions to create tables.
distance_strategy (DistanceStrategy) – The distance strategy to use. (default: COSINE)
pre_delete_collection (bool) – If True, will delete the collection if it exists. (default: False). Useful for testing.
engine_args (Optional[dict[str, Any]]) – SQLAlchemy’s create engine arguments.
use_jsonb (bool) – Use JSONB instead of JSON for metadata. (default: True) Strongly discouraged from using JSON as it’s not as efficient for querying. It’s provided here for backwards compatibility with older versions, and will be removed in the future.
create_extension (bool) – If True, will create the vector extension if it doesn’t exist. disabling creation is useful when using ReadOnly Databases.
collection_metadata (Optional[dict]) –
logger (Optional[logging.Logger]) –
relevance_score_fn (Optional[Callable[[float], float]]) –
async_mode (bool) –
Attributes
distance_strategy
embeddings
Access the query embedding object if available.
Methods
__init__
(embeddings, *[, connection, ...])Initialize the PGVector store.
aadd_documents
(documents, **kwargs)Async run more documents through the embeddings and add to the vectorstore.
aadd_embeddings
(texts, embeddings[, ...])Async add embeddings to the vectorstore.
aadd_texts
(texts[, metadatas])Async run more texts through the embeddings and add to the vectorstore.
add_documents
(documents, **kwargs)Add or update documents in the vectorstore.
add_embeddings
(texts, embeddings[, ...])Add embeddings to the vectorstore.
add_texts
(texts[, metadatas])Run more texts through the embeddings and add to the vectorstore.
adelete
([ids, collection_only])Async delete vectors by ids or uuids.
afrom_documents
(documents, embedding[, ...])Return VectorStore initialized from documents and embeddings.
afrom_embeddings
(text_embeddings, embedding)Construct PGVector wrapper from raw documents and pre- generated embeddings.
afrom_existing_index
(embedding, *[, ...])Get instance of an existing PGVector store.This method will return the instance of the store without inserting any new embeddings
afrom_texts
(texts, embedding[, metadatas, ...])Return VectorStore initialized from documents and embeddings.
aget_by_ids
(ids, /)Get documents by ids.
aget_collection
(session)amax_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance
Return docs selected using the maximal marginal relevance with score.
Return docs selected using the maximal marginal relevance with score
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Async return docs most similar to query using a specified search type.
asimilarity_search
(query[, k, filter])Run similarity search with PGVector with distance.
asimilarity_search_by_vector
(embedding[, k, ...])Return docs most similar to embedding vector.
Async return docs and relevance scores in the range [0, 1].
asimilarity_search_with_score
(query[, k, filter])Return docs most similar to query.
astreaming_upsert
(items, /, batch_size, **kwargs)aupsert
(items, /, **kwargs)Upsert documents into the vectorstore.
connection_string_from_db_params
(driver, ...)Return connection string from database parameters.
delete
([ids, collection_only])Delete vectors by ids or uuids.
from_documents
(documents, embedding, *[, ...])Return VectorStore initialized from documents and embeddings.
from_embeddings
(text_embeddings, embedding, *)Construct PGVector wrapper from raw documents and embeddings.
from_existing_index
(embedding, *[, ...])Get instance of an existing PGVector store.This method will return the instance of the store without inserting any new embeddings
from_texts
(texts, embedding[, metadatas, ...])Return VectorStore initialized from documents and embeddings.
get_by_ids
(ids, /)Get documents by ids.
get_collection
(session)get_connection_string
(kwargs)max_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance
Return docs selected using the maximal marginal relevance with score.
Return docs selected using the maximal marginal relevance with score
search
(query, search_type, **kwargs)Return docs most similar to query using a specified search type.
similarity_search
(query[, k, filter])Run similarity search with PGVector with distance.
similarity_search_by_vector
(embedding[, k, ...])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score
(query[, k, filter])Return docs most similar to query.
similarity_search_with_score_by_vector
(embedding)streaming_upsert
(items, /, batch_size, **kwargs)upsert
(items, /, **kwargs)Upsert documents into the vectorstore.
- __init__(embeddings: Embeddings, *, connection: Union[None, Engine, str, AsyncEngine] = None, embedding_length: Optional[int] = None, collection_name: str = 'langchain', collection_metadata: Optional[dict] = None, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, pre_delete_collection: bool = False, logger: Optional[Logger] = None, relevance_score_fn: Optional[Callable[[float], float]] = None, engine_args: Optional[dict[str, Any]] = None, use_jsonb: bool = True, create_extension: bool = True, async_mode: bool = False) None [source]¶
Initialize the PGVector store. For an async version, use PGVector.acreate() instead.
- Parameters
connection (Union[None, Engine, str, AsyncEngine]) – Postgres connection string or (async)engine.
embeddings (Embeddings) – Any embedding function implementing langchain.embeddings.base.Embeddings interface.
embedding_length (Optional[int]) – The length of the embedding vector. (default: None) NOTE: This is not mandatory. Defining it will prevent vectors of any other size to be added to the embeddings table but, without it, the embeddings can’t be indexed.
collection_name (str) – The name of the collection to use. (default: langchain) NOTE: This is not the name of the table, but the name of the collection. The tables will be created when initializing the store (if not exists) So, make sure the user has the right permissions to create tables.
distance_strategy (DistanceStrategy) – The distance strategy to use. (default: COSINE)
pre_delete_collection (bool) – If True, will delete the collection if it exists. (default: False). Useful for testing.
engine_args (Optional[dict[str, Any]]) – SQLAlchemy’s create engine arguments.
use_jsonb (bool) – Use JSONB instead of JSON for metadata. (default: True) Strongly discouraged from using JSON as it’s not as efficient for querying. It’s provided here for backwards compatibility with older versions, and will be removed in the future.
create_extension (bool) – If True, will create the vector extension if it doesn’t exist. disabling creation is useful when using ReadOnly Databases.
collection_metadata (Optional[dict]) –
logger (Optional[Logger]) –
relevance_score_fn (Optional[Callable[[float], float]]) –
async_mode (bool) –
- Return type
None
- async aadd_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Async run more documents through the embeddings and add to the vectorstore.
- Parameters
documents (List[Document]) – Documents to add to the vectorstore.
kwargs (Any) – Additional keyword arguments.
- Returns
List of IDs of the added texts.
- Raises
ValueError – If the number of IDs does not match the number of documents.
- Return type
List[str]
- async aadd_embeddings(texts: Sequence[str], embeddings: List[List[float]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str] [source]¶
Async add embeddings to the vectorstore.
- Parameters
texts (Sequence[str]) – Iterable of strings to add to the vectorstore.
embeddings (List[List[float]]) – List of list of embedding vectors.
metadatas (Optional[List[dict]]) – List of metadatas associated with the texts.
ids (Optional[List[str]]) – Optional list of ids for the texts. If not provided, will generate a new id for each text.
kwargs (Any) – vectorstore specific parameters
- Return type
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] ¶
Async run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (Iterable[str]) – Iterable of strings to add to the vectorstore.
metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts. Default is None.
**kwargs (Any) – vectorstore specific parameters.
- Returns
List of ids from adding the texts into the vectorstore.
- Raises
ValueError – If the number of metadatas does not match the number of texts.
ValueError – If the number of ids does not match the number of texts.
- Return type
List[str]
- add_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Add or update documents in the vectorstore.
- Parameters
documents (List[Document]) – Documents to add to the vectorstore.
kwargs (Any) – Additional keyword arguments. if kwargs contains ids and documents contain ids, the ids in the kwargs will receive precedence.
- Returns
List of IDs of the added texts.
- Raises
ValueError – If the number of ids does not match the number of documents.
- Return type
List[str]
- add_embeddings(texts: Sequence[str], embeddings: List[List[float]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str] [source]¶
Add embeddings to the vectorstore.
- Parameters
texts (Sequence[str]) – Iterable of strings to add to the vectorstore.
embeddings (List[List[float]]) – List of list of embedding vectors.
metadatas (Optional[List[dict]]) – List of metadatas associated with the texts.
ids (Optional[List[str]]) – Optional list of ids for the documents. If not provided, will generate a new id for each document.
kwargs (Any) – vectorstore specific parameters
- Return type
List[str]
- add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] ¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (Iterable[str]) – Iterable of strings to add to the vectorstore.
metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts.
**kwargs (Any) – vectorstore specific parameters. One of the kwargs should be ids which is a list of ids associated with the texts.
- Returns
List of ids from adding the texts into the vectorstore.
- Raises
ValueError – If the number of metadatas does not match the number of texts.
ValueError – If the number of ids does not match the number of texts.
- Return type
List[str]
- async adelete(ids: Optional[List[str]] = None, collection_only: bool = False, **kwargs: Any) None [source]¶
Async delete vectors by ids or uuids.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
collection_only (bool) – Only delete ids in the collection.
kwargs (Any) –
- Return type
None
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, collection_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, *, use_jsonb: bool = True, **kwargs: Any) PGVector [source]¶
Return VectorStore initialized from documents and embeddings. Postgres connection string is required “Either pass it as a parameter or set the PGVECTOR_CONNECTION_STRING environment variable.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
collection_name (str) –
distance_strategy (DistanceStrategy) –
ids (Optional[List[str]]) –
pre_delete_collection (bool) –
use_jsonb (bool) –
kwargs (Any) –
- Return type
- async classmethod afrom_embeddings(text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any) PGVector [source]¶
Construct PGVector wrapper from raw documents and pre- generated embeddings.
Return VectorStore initialized from documents and embeddings. Postgres connection string is required “Either pass it as a parameter or set the PGVECTOR_CONNECTION_STRING environment variable.
Example
from langchain_community.vectorstores import PGVector from langchain_community.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) faiss = PGVector.from_embeddings(text_embedding_pairs, embeddings)
- Parameters
text_embeddings (List[Tuple[str, List[float]]]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
collection_name (str) –
distance_strategy (DistanceStrategy) –
ids (Optional[List[str]]) –
pre_delete_collection (bool) –
kwargs (Any) –
- Return type
- async classmethod afrom_existing_index(embedding: Embeddings, *, collection_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, pre_delete_collection: bool = False, connection: Optional[Union[Engine, str]] = None, **kwargs: Any) PGVector [source]¶
Get instance of an existing PGVector store.This method will return the instance of the store without inserting any new embeddings
- Parameters
embedding (Embeddings) –
collection_name (str) –
distance_strategy (DistanceStrategy) –
pre_delete_collection (bool) –
connection (Optional[Union[Engine, str]]) –
kwargs (Any) –
- Return type
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, *, use_jsonb: bool = True, **kwargs: Any) PGVector [source]¶
Return VectorStore initialized from documents and embeddings.
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
collection_name (str) –
distance_strategy (DistanceStrategy) –
ids (Optional[List[str]]) –
pre_delete_collection (bool) –
use_jsonb (bool) –
kwargs (Any) –
- Return type
- async aget_by_ids(ids: Sequence[str], /) List[Document] [source]¶
Get documents by ids.
- Parameters
ids (Sequence[str]) –
- Return type
List[Document]
- async aget_collection(session: AsyncSession) Any [source]¶
- Parameters
session (AsyncSession) –
- Return type
Any
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
- Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document] [source]¶
- Return docs selected using the maximal marginal relevance
to embedding vector.
- Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
- Parameters
embedding (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- async amax_marginal_relevance_search_with_score(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[dict] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Return docs selected using the maximal marginal relevance with score.
- Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
- List of Documents selected by maximal marginal
relevance to the query and score for each.
- Return type
List[Tuple[Document, float]]
- async amax_marginal_relevance_search_with_score_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
- Return docs selected using the maximal marginal relevance with score
to embedding vector.
- Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
- List of Documents selected by maximal marginal
relevance to the query and score for each.
- Return type
List[Tuple[Document, float]]
- as_retriever(**kwargs: Any) VectorStoreRetriever ¶
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters
**kwargs (Any) –
Keyword arguments to pass to the search function. Can include: search_type (Optional[str]): Defines the type of search that
the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
- search_kwargs (Optional[Dict]): Keyword arguments to pass to the
- search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
- fetch_k: Amount of documents to pass to MMR algorithm
(Default: 20)
- lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
- Returns
Retriever class for VectorStore.
- Return type
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Async return docs most similar to query using a specified search type.
- Parameters
query (str) – Input text.
search_type (str) – Type of search to perform. Can be “similarity”, “mmr”, or “similarity_score_threshold”.
**kwargs (Any) – Arguments to pass to the search method.
- Returns
List of Documents most similar to the query.
- Raises
ValueError – If search_type is not one of “similarity”, “mmr”, or “similarity_score_threshold”.
- Return type
List[Document]
- async asimilarity_search(query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any) List[Document] [source]¶
Run similarity search with PGVector with distance.
- Parameters
query (str) – Query text to search for.
k (int) – Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
List of Documents most similar to the query.
- Return type
List[Document]
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[dict] = None, **kwargs: Any) List[Document] [source]¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
List of Documents most similar to the query vector.
- Return type
List[Document]
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Async return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – Input text.
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- async asimilarity_search_with_score(query: str, k: int = 4, filter: Optional[dict] = None) List[Tuple[Document, float]] [source]¶
Return docs most similar to query.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns
List of Documents most similar to the query and score for each.
- Return type
List[Tuple[Document, float]]
- async asimilarity_search_with_score_by_vector(embedding: List[float], k: int = 4, filter: Optional[dict] = None) List[Tuple[Document, float]] [source]¶
- Parameters
embedding (List[float]) –
k (int) –
filter (Optional[dict]) –
- Return type
List[Tuple[Document, float]]
- astreaming_upsert(items: AsyncIterable[Document], /, batch_size: int, **kwargs: Any) AsyncIterator[UpsertResponse] ¶
Beta
Added in 0.2.11. The API is subject to change.
Upsert documents in a streaming fashion. Async version of streaming_upsert.
- Parameters
items (AsyncIterable[Document]) – Iterable of Documents to add to the vectorstore.
batch_size (int) – The size of each batch to upsert.
kwargs (Any) – Additional keyword arguments. kwargs should only include parameters that are common to all documents. (e.g., timeout for indexing, retry policy, etc.) kwargs should not include ids to avoid ambiguous semantics. Instead the ID should be provided as part of the Document object.
- Yields
UpsertResponse – A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.
- Return type
AsyncIterator[UpsertResponse]
New in version 0.2.11.
- async aupsert(items: Sequence[Document], /, **kwargs: Any) UpsertResponse [source]¶
Upsert documents into the vectorstore.
- Parameters
items (Sequence[Document]) – Sequence of documents to upsert.
kwargs (Any) – vectorstore specific parameters
- Returns
UpsertResponse
- Return type
- classmethod connection_string_from_db_params(driver: str, host: str, port: int, database: str, user: str, password: str) str [source]¶
Return connection string from database parameters.
- Parameters
driver (str) –
host (str) –
port (int) –
database (str) –
user (str) –
password (str) –
- Return type
str
- delete(ids: Optional[List[str]] = None, collection_only: bool = False, **kwargs: Any) None [source]¶
Delete vectors by ids or uuids.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
collection_only (bool) – Only delete ids in the collection.
kwargs (Any) –
- Return type
None
- classmethod from_documents(documents: List[Document], embedding: Embeddings, *, connection: Optional[Union[Engine, str]] = None, collection_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, use_jsonb: bool = True, **kwargs: Any) PGVector [source]¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) –
embedding (Embeddings) –
connection (Optional[Union[Engine, str]]) –
collection_name (str) –
distance_strategy (DistanceStrategy) –
ids (Optional[List[str]]) –
pre_delete_collection (bool) –
use_jsonb (bool) –
kwargs (Any) –
- Return type
- classmethod from_embeddings(text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, *, metadatas: Optional[List[dict]] = None, collection_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any) PGVector [source]¶
Construct PGVector wrapper from raw documents and embeddings.
- Parameters
text_embeddings (List[Tuple[str, List[float]]]) – List of tuples of text and embeddings.
embedding (Embeddings) – Embeddings object.
metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts.
collection_name (str) – Name of the collection.
distance_strategy (DistanceStrategy) – Distance strategy to use.
ids (Optional[List[str]]) – Optional list of ids for the documents. If not provided, will generate a new id for each document.
pre_delete_collection (bool) – If True, will delete the collection if it exists. Attention: This will delete all the documents in the existing collection.
kwargs (Any) – Additional arguments.
- Returns
PGVector instance.
- Return type
Example
from langchain_postgres.vectorstores import PGVector from langchain_openai.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) vectorstore = PGVector.from_embeddings(text_embedding_pairs, embeddings)
- classmethod from_existing_index(embedding: Embeddings, *, collection_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, pre_delete_collection: bool = False, connection: Optional[Union[Engine, str]] = None, **kwargs: Any) PGVector [source]¶
Get instance of an existing PGVector store.This method will return the instance of the store without inserting any new embeddings
- Parameters
embedding (Embeddings) –
collection_name (str) –
distance_strategy (DistanceStrategy) –
pre_delete_collection (bool) –
connection (Optional[Union[Engine, str]]) –
kwargs (Any) –
- Return type
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, *, collection_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, use_jsonb: bool = True, **kwargs: Any) PGVector [source]¶
Return VectorStore initialized from documents and embeddings.
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
collection_name (str) –
distance_strategy (DistanceStrategy) –
ids (Optional[List[str]]) –
pre_delete_collection (bool) –
use_jsonb (bool) –
kwargs (Any) –
- Return type
- get_by_ids(ids: Sequence[str], /) List[Document] [source]¶
Get documents by ids.
- Parameters
ids (Sequence[str]) –
- Return type
List[Document]
- classmethod get_connection_string(kwargs: Dict[str, Any]) str [source]¶
- Parameters
kwargs (Dict[str, Any]) –
- Return type
str
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
- Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document] [source]¶
- Return docs selected using the maximal marginal relevance
to embedding vector.
- Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
- Parameters
embedding (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- max_marginal_relevance_search_with_score(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[dict] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Return docs selected using the maximal marginal relevance with score.
- Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
- List of Documents selected by maximal marginal
relevance to the query and score for each.
- Return type
List[Tuple[Document, float]]
- max_marginal_relevance_search_with_score_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
- Return docs selected using the maximal marginal relevance with score
to embedding vector.
- Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
- List of Documents selected by maximal marginal
relevance to the query and score for each.
- Return type
List[Tuple[Document, float]]
- search(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using a specified search type.
- Parameters
query (str) – Input text
search_type (str) – Type of search to perform. Can be “similarity”, “mmr”, or “similarity_score_threshold”.
**kwargs (Any) – Arguments to pass to the search method.
- Returns
List of Documents most similar to the query.
- Raises
ValueError – If search_type is not one of “similarity”, “mmr”, or “similarity_score_threshold”.
- Return type
List[Document]
- similarity_search(query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any) List[Document] [source]¶
Run similarity search with PGVector with distance.
- Parameters
query (str) – Query text to search for.
k (int) – Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
List of Documents most similar to the query.
- Return type
List[Document]
- similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[dict] = None, **kwargs: Any) List[Document] [source]¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
kwargs (Any) –
- Returns
List of Documents most similar to the query vector.
- Return type
List[Document]
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – Input text.
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs.
- Returns
List of Tuples of (doc, similarity_score).
- Return type
List[Tuple[Document, float]]
- similarity_search_with_score(query: str, k: int = 4, filter: Optional[dict] = None) List[Tuple[Document, float]] [source]¶
Return docs most similar to query.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
- Returns
List of Documents most similar to the query and score for each.
- Return type
List[Tuple[Document, float]]
- similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, filter: Optional[dict] = None) List[Tuple[Document, float]] [source]¶
- Parameters
embedding (List[float]) –
k (int) –
filter (Optional[dict]) –
- Return type
List[Tuple[Document, float]]
- streaming_upsert(items: Iterable[Document], /, batch_size: int, **kwargs: Any) Iterator[UpsertResponse] ¶
Beta
Added in 0.2.11. The API is subject to change.
Upsert documents in a streaming fashion.
- Parameters
items (Iterable[Document]) – Iterable of Documents to add to the vectorstore.
batch_size (int) – The size of each batch to upsert.
kwargs (Any) – Additional keyword arguments. kwargs should only include parameters that are common to all documents. (e.g., timeout for indexing, retry policy, etc.) kwargs should not include ids to avoid ambiguous semantics. Instead, the ID should be provided as part of the Document object.
- Yields
UpsertResponse – A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.
- Return type
Iterator[UpsertResponse]
New in version 0.2.11.
- upsert(items: Sequence[Document], /, **kwargs: Any) UpsertResponse [source]¶
Upsert documents into the vectorstore.
- Parameters
items (Sequence[Document]) – Sequence of documents to upsert.
kwargs (Any) – vectorstore specific parameters
- Returns
UpsertResponse
- Return type