langchain_mongodb.vectorstores.MongoDBAtlasVectorSearch

class langchain_mongodb.vectorstores.MongoDBAtlasVectorSearch(collection: Collection[MongoDBDocumentType], embedding: Embeddings, *, index_name: str = 'default', text_key: str = 'text', embedding_key: str = 'embedding', relevance_score_fn: str = 'cosine')[source]

MongoDB Atlas Vector Search vector store.

To use, you should have both: - the pymongo python package installed - a connection string associated with a MongoDB Atlas Cluster having deployed an

Atlas Search index

Example

from langchain_mongodb import MongoDBAtlasVectorSearch
from langchain_openai import OpenAIEmbeddings
from pymongo import MongoClient

mongo_client = MongoClient("<YOUR-CONNECTION-STRING>")
collection = mongo_client["<db_name>"]["<collection_name>"]
embeddings = OpenAIEmbeddings()
vectorstore = MongoDBAtlasVectorSearch(collection, embeddings)
Parameters
  • collection (Collection[MongoDBDocumentType]) – MongoDB collection to add the texts to.

  • embedding (Embeddings) – Text embedding model to use.

  • text_key (str) – MongoDB field that will contain the text for each document. defaults to ‘text’

  • embedding_key (str) – MongoDB field that will contain the embedding for each document. defaults to ‘embedding’

  • index_name (str) – Name of the Atlas Search index. defaults to ‘default’

  • relevance_score_fn (str) – The similarity score used for the index. defaults to ‘cosine’

  • supported (Currently) – ‘euclidean’, ‘cosine’, and ‘dotProduct’.

Attributes

embeddings

Access the query embedding object if available.

Methods

__init__(collection, embedding, *[, ...])

param collection

MongoDB collection to add the texts to.

aadd_documents(documents, **kwargs)

Async run more documents through the embeddings and add to the vectorstore.

aadd_texts(texts[, metadatas])

Async run more texts through the embeddings and add to the vectorstore.

add_documents(documents[, ids, batch_size])

Add documents to the vectorstore.

add_texts(texts[, metadatas, ids])

Add texts, create embeddings, and add to the Collection and index.

adelete([ids])

Delete by vector ID or other criteria.

afrom_documents(documents, embedding, **kwargs)

Async return VectorStore initialized from documents and embeddings.

afrom_texts(texts, embedding[, metadatas])

Async return VectorStore initialized from texts and embeddings.

aget_by_ids(ids, /)

Async get documents by their IDs.

amax_marginal_relevance_search(query[, k, ...])

Async return docs selected using the maximal marginal relevance.

amax_marginal_relevance_search_by_vector(...)

Return docs selected using the maximal marginal relevance.

as_retriever(**kwargs)

Return VectorStoreRetriever initialized from this VectorStore.

asearch(query, search_type, **kwargs)

Async return docs most similar to query using a specified search type.

asimilarity_search(query[, k])

Async return docs most similar to query.

asimilarity_search_by_vector(embedding[, k])

Async return docs most similar to embedding vector.

asimilarity_search_with_relevance_scores(query)

Async return docs and relevance scores in the range [0, 1].

asimilarity_search_with_score(*args, **kwargs)

Async run similarity search with distance.

astreaming_upsert(items, /, batch_size, **kwargs)

aupsert(items, /, **kwargs)

bulk_embed_and_insert_texts(texts, metadatas)

Bulk insert single batch of texts, embeddings, and optionally ids.

create_vector_search_index(dimensions[, ...])

Creates a MongoDB Atlas vectorSearch index for the VectorStore

delete([ids])

Delete documents from VectorStore by ids.

from_connection_string(connection_string, ...)

Construct a MongoDB Atlas Vector Search vector store from a MongoDB connection URI.

from_documents(documents, embedding, **kwargs)

Return VectorStore initialized from documents and embeddings.

from_texts(texts, embedding[, metadatas, ...])

Construct a MongoDB Atlas Vector Search vector store from raw documents.

get_by_ids(ids, /)

Get documents by their IDs.

max_marginal_relevance_search(query[, k, ...])

Return documents selected using the maximal marginal relevance.

max_marginal_relevance_search_by_vector(...)

Return docs selected using the maximal marginal relevance.

search(query, search_type, **kwargs)

Return docs most similar to query using a specified search type.

similarity_search(query[, k, pre_filter, ...])

Return MongoDB documents most similar to the given query.

similarity_search_by_vector(embedding[, k])

Return docs most similar to embedding vector.

similarity_search_with_relevance_scores(query)

Return docs and relevance scores in the range [0, 1].

similarity_search_with_score(query[, k, ...])

Return MongoDB documents most similar to the given query and their scores.

streaming_upsert(items, /, batch_size, **kwargs)

upsert(items, /, **kwargs)

__init__(collection: Collection[MongoDBDocumentType], embedding: Embeddings, *, index_name: str = 'default', text_key: str = 'text', embedding_key: str = 'embedding', relevance_score_fn: str = 'cosine')[source]
Parameters
  • collection (Collection[MongoDBDocumentType]) – MongoDB collection to add the texts to.

  • embedding (Embeddings) – Text embedding model to use.

  • text_key (str) – MongoDB field that will contain the text for each document. defaults to ‘text’

  • embedding_key (str) – MongoDB field that will contain the embedding for each document. defaults to ‘embedding’

  • index_name (str) – Name of the Atlas Search index. defaults to ‘default’

  • relevance_score_fn (str) – The similarity score used for the index. defaults to ‘cosine’

  • supported (Currently) – ‘euclidean’, ‘cosine’, and ‘dotProduct’.

async aadd_documents(documents: List[Document], **kwargs: Any) List[str]

Async run more documents through the embeddings and add to the vectorstore.

Parameters
  • documents (List[Document]) – Documents to add to the vectorstore.

  • kwargs (Any) – Additional keyword arguments.

Returns

List of IDs of the added texts.

Raises

ValueError – If the number of IDs does not match the number of documents.

Return type

List[str]

async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str]

Async run more texts through the embeddings and add to the vectorstore.

Parameters
  • texts (Iterable[str]) – Iterable of strings to add to the vectorstore.

  • metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts. Default is None.

  • **kwargs (Any) – vectorstore specific parameters.

Returns

List of ids from adding the texts into the vectorstore.

Raises
  • ValueError – If the number of metadatas does not match the number of texts.

  • ValueError – If the number of ids does not match the number of texts.

Return type

List[str]

add_documents(documents: List[Document], ids: Optional[List[str]] = None, batch_size: int = 100000, **kwargs: Any) List[str][source]

Add documents to the vectorstore.

Parameters
  • documents (List[Document]) – Documents to add to the vectorstore.

  • ids (Optional[List[str]]) – Optional list of unique ids that will be used as index in VectorStore. See note on ids in add_texts.

  • batch_size (int) – Number of documents to insert at a time. Tuning this may help with performance and sidestep MongoDB limits.

  • kwargs (Any) –

Returns

List of IDs of the added texts.

Return type

List[str]

add_texts(texts: Iterable[str], metadatas: Optional[List[Dict[str, Any]]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str][source]

Add texts, create embeddings, and add to the Collection and index.

Important notes on ids:
  • If _id or id is a key in the metadatas dicts, one must

    pop them and provide as separate list.

  • They must be unique.

  • If they are not provided, the VectorStore will create unique ones,

    stored as bson.ObjectIds internally, and strings in Langchain. These will appear in Document.metadata with key, ‘_id’.

Parameters
  • texts (Iterable[str]) – Iterable of strings to add to the vectorstore.

  • metadatas (Optional[List[Dict[str, Any]]]) – Optional list of metadatas associated with the texts.

  • ids (Optional[List[str]]) – Optional list of unique ids that will be used as index in VectorStore. See note on ids.

  • kwargs (Any) –

Returns

List of ids added to the vectorstore.

Return type

List[str]

async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool][source]

Delete by vector ID or other criteria.

Parameters
  • ids (Optional[List[str]]) – List of ids to delete.

  • **kwargs (Any) – Other keyword arguments that subclasses might use.

Returns

True if deletion is successful, False otherwise, None if not implemented.

Return type

Optional[bool]

async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST

Async return VectorStore initialized from documents and embeddings.

Parameters
  • documents (List[Document]) – List of Documents to add to the vectorstore.

  • embedding (Embeddings) – Embedding function to use.

  • kwargs (Any) – Additional keyword arguments.

Returns

VectorStore initialized from documents and embeddings.

Return type

VectorStore

async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST

Async return VectorStore initialized from texts and embeddings.

Parameters
  • texts (List[str]) – Texts to add to the vectorstore.

  • embedding (Embeddings) – Embedding function to use.

  • metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts. Default is None.

  • kwargs (Any) – Additional keyword arguments.

Returns

VectorStore initialized from texts and embeddings.

Return type

VectorStore

async aget_by_ids(ids: Sequence[str], /) List[Document]

Async get documents by their IDs.

The returned documents are expected to have the ID field set to the ID of the document in the vector store.

Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.

Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.

This method should NOT raise exceptions if no documents are found for some IDs.

Parameters

ids (Sequence[str]) – List of ids to retrieve.

Returns

List of Documents.

Return type

List[Document]

New in version 0.2.11.

Async return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters
  • query (str) – Text to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • kwargs (Any) –

Returns

List of Documents selected by maximal marginal relevance.

Return type

List[Document]

async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document][source]

Return docs selected using the maximal marginal relevance.

Parameters
  • embedding (List[float]) –

  • k (int) –

  • fetch_k (int) –

  • lambda_mult (float) –

  • kwargs (Any) –

Return type

List[Document]

as_retriever(**kwargs: Any) VectorStoreRetriever

Return VectorStoreRetriever initialized from this VectorStore.

Parameters

**kwargs (Any) –

Keyword arguments to pass to the search function. Can include: search_type (Optional[str]): Defines the type of search that

the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.

search_kwargs (Optional[Dict]): Keyword arguments to pass to the
search function. Can include things like:

k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold

for similarity_score_threshold

fetch_k: Amount of documents to pass to MMR algorithm

(Default: 20)

lambda_mult: Diversity of results returned by MMR;

1 for minimum diversity and 0 for maximum. (Default: 0.5)

filter: Filter by document metadata

Returns

Retriever class for VectorStore.

Return type

VectorStoreRetriever

Examples:

# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 6, 'lambda_mult': 0.25}
)

# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 5, 'fetch_k': 50}
)

# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
    search_type="similarity_score_threshold",
    search_kwargs={'score_threshold': 0.8}
)

# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={'k': 1})

# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
    search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}}
)
async asearch(query: str, search_type: str, **kwargs: Any) List[Document]

Async return docs most similar to query using a specified search type.

Parameters
  • query (str) – Input text.

  • search_type (str) – Type of search to perform. Can be “similarity”, “mmr”, or “similarity_score_threshold”.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents most similar to the query.

Raises

ValueError – If search_type is not one of “similarity”, “mmr”, or “similarity_score_threshold”.

Return type

List[Document]

Async return docs most similar to query.

Parameters
  • query (str) – Input text.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents most similar to the query.

Return type

List[Document]

async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document]

Async return docs most similar to embedding vector.

Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents most similar to the query vector.

Return type

List[Document]

async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]]

Async return docs and relevance scores in the range [0, 1].

0 is dissimilar, 1 is most similar.

Parameters
  • query (str) – Input text.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) –

    kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to

    filter the resulting set of retrieved docs

Returns

List of Tuples of (doc, similarity_score)

Return type

List[Tuple[Document, float]]

async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]]

Async run similarity search with distance.

Parameters
  • *args (Any) – Arguments to pass to the search method.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Tuples of (doc, similarity_score).

Return type

List[Tuple[Document, float]]

astreaming_upsert(items: AsyncIterable[Document], /, batch_size: int, **kwargs: Any) AsyncIterator[UpsertResponse]

Beta

Added in 0.2.11. The API is subject to change.

Upsert documents in a streaming fashion. Async version of streaming_upsert.

Parameters
  • items (AsyncIterable[Document]) – Iterable of Documents to add to the vectorstore.

  • batch_size (int) – The size of each batch to upsert.

  • kwargs (Any) – Additional keyword arguments. kwargs should only include parameters that are common to all documents. (e.g., timeout for indexing, retry policy, etc.) kwargs should not include ids to avoid ambiguous semantics. Instead the ID should be provided as part of the Document object.

Yields

UpsertResponse – A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.

Return type

AsyncIterator[UpsertResponse]

New in version 0.2.11.

async aupsert(items: Sequence[Document], /, **kwargs: Any) UpsertResponse

Beta

Added in 0.2.11. The API is subject to change.

Add or update documents in the vectorstore. Async version of upsert.

The upsert functionality should utilize the ID field of the Document object if it is provided. If the ID is not provided, the upsert method is free to generate an ID for the document.

When an ID is specified and the document already exists in the vectorstore, the upsert method should update the document with the new data. If the document does not exist, the upsert method should add the document to the vectorstore.

Parameters
  • items (Sequence[Document]) – Sequence of Documents to add to the vectorstore.

  • kwargs (Any) – Additional keyword arguments.

Returns

A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.

Return type

UpsertResponse

New in version 0.2.11.

bulk_embed_and_insert_texts(texts: Union[List[str], Iterable[str]], metadatas: Union[List[dict], Generator[dict, Any, Any]], ids: Optional[List[str]] = None) List[str][source]

Bulk insert single batch of texts, embeddings, and optionally ids.

See add_texts for additional details.

Parameters
  • texts (Union[List[str], Iterable[str]]) –

  • metadatas (Union[List[dict], Generator[dict, Any, Any]]) –

  • ids (Optional[List[str]]) –

Return type

List[str]

create_vector_search_index(dimensions: int, filters: Optional[List[Dict[str, str]]] = None, update: bool = False) None[source]

Creates a MongoDB Atlas vectorSearch index for the VectorStore

Note**: This method may fail as it requires a MongoDB Atlas with these pre-requisites:

Parameters
  • dimensions (int) – Number of dimensions in embedding

  • filters (Optional[List[Dict[str, str]]], optional) – additional filters

  • definition. (for index) – Defaults to None.

  • update (bool, optional) – Updates existing vectorSearch index. Defaults to False.

Return type

None

delete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool][source]

Delete documents from VectorStore by ids.

Parameters
  • ids (Optional[List[str]]) – List of ids to delete.

  • **kwargs (Any) – Other keyword arguments passed to Collection.delete_many()

Returns

True if deletion is successful, False otherwise, None if not implemented.

Return type

Optional[bool]

classmethod from_connection_string(connection_string: str, namespace: str, embedding: Embeddings, **kwargs: Any) MongoDBAtlasVectorSearch[source]

Construct a MongoDB Atlas Vector Search vector store from a MongoDB connection URI.

Parameters
  • connection_string (str) – A valid MongoDB connection URI.

  • namespace (str) – A valid MongoDB namespace (database and collection).

  • embedding (Embeddings) – The text embedding model to use for the vector store.

  • kwargs (Any) –

Returns

A new MongoDBAtlasVectorSearch instance.

Return type

MongoDBAtlasVectorSearch

classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST

Return VectorStore initialized from documents and embeddings.

Parameters
  • documents (List[Document]) – List of Documents to add to the vectorstore.

  • embedding (Embeddings) – Embedding function to use.

  • kwargs (Any) – Additional keyword arguments.

Returns

VectorStore initialized from documents and embeddings.

Return type

VectorStore

classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[Dict]] = None, collection: Optional[Collection[MongoDBDocumentType]] = None, ids: Optional[List[str]] = None, **kwargs: Any) MongoDBAtlasVectorSearch[source]

Construct a MongoDB Atlas Vector Search vector store from raw documents.

This is a user-friendly interface that:
  1. Embeds documents.

  2. Adds the documents to a provided MongoDB Atlas Vector Search index

    (Lucene)

This is intended to be a quick way to get started.

Example

Parameters
  • texts (List[str]) –

  • embedding (Embeddings) –

  • metadatas (Optional[List[Dict]]) –

  • collection (Optional[Collection[MongoDBDocumentType]]) –

  • ids (Optional[List[str]]) –

  • kwargs (Any) –

Return type

MongoDBAtlasVectorSearch

get_by_ids(ids: Sequence[str], /) List[Document]

Get documents by their IDs.

The returned documents are expected to have the ID field set to the ID of the document in the vector store.

Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.

Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.

This method should NOT raise exceptions if no documents are found for some IDs.

Parameters

ids (Sequence[str]) – List of ids to retrieve.

Returns

List of Documents.

Return type

List[Document]

New in version 0.2.11.

Return documents selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters
  • query (str) – Text to look up documents similar to.

  • k (int) – (Optional) number of documents to return. Defaults to 4.

  • fetch_k (int) – (Optional) number of documents to fetch before passing to MMR algorithm. Defaults to 20.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • pre_filter (Optional[Dict]) – (Optional) dictionary of argument(s) to prefilter on document fields.

  • post_filter_pipeline (Optional[List[Dict]]) – (Optional) pipeline of MongoDB aggregation stages following the vectorSearch stage.

  • kwargs (Any) –

Returns

List of documents selected by maximal marginal relevance.

Return type

List[Document]

max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, pre_filter: Optional[Dict] = None, post_filter_pipeline: Optional[List[Dict]] = None, **kwargs: Any) List[Document][source]

Return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • pre_filter (Optional[Dict]) – (Optional) dictionary of argument(s) to prefilter on document fields.

  • post_filter_pipeline (Optional[List[Dict]]) – (Optional) pipeline of MongoDB aggregation stages following the vectorSearch stage.

  • kwargs (Any) –

Returns

List of Documents selected by maximal marginal relevance.

Return type

List[Document]

search(query: str, search_type: str, **kwargs: Any) List[Document]

Return docs most similar to query using a specified search type.

Parameters
  • query (str) – Input text

  • search_type (str) – Type of search to perform. Can be “similarity”, “mmr”, or “similarity_score_threshold”.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents most similar to the query.

Raises

ValueError – If search_type is not one of “similarity”, “mmr”, or “similarity_score_threshold”.

Return type

List[Document]

Return MongoDB documents most similar to the given query.

Uses the vectorSearch operator available in MongoDB Atlas Search. For more: https://mongodb.ac.cn/docs/atlas/atlas-vector-search/vector-search-stage/

Parameters
  • query (str) – Text to look up documents similar to.

  • k (int) – (Optional) number of documents to return. Defaults to 4.

  • pre_filter (Optional[Dict]) – (Optional) dictionary of argument(s) to prefilter document fields on.

  • post_filter_pipeline (Optional[List[Dict]]) – (Optional) Pipeline of MongoDB aggregation stages following the vectorSearch stage.

  • kwargs (Any) –

Returns

List of documents most similar to the query and their scores.

Return type

List[Document]

similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document]

Return docs most similar to embedding vector.

Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents most similar to the query vector.

Return type

List[Document]

similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]]

Return docs and relevance scores in the range [0, 1].

0 is dissimilar, 1 is most similar.

Parameters
  • query (str) – Input text.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) –

    kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to

    filter the resulting set of retrieved docs.

Returns

List of Tuples of (doc, similarity_score).

Return type

List[Tuple[Document, float]]

similarity_search_with_score(query: str, k: int = 4, pre_filter: Optional[Dict] = None, post_filter_pipeline: Optional[List[Dict]] = None, **kwargs: Any) List[Tuple[Document, float]][source]

Return MongoDB documents most similar to the given query and their scores.

Uses the vectorSearch operator available in MongoDB Atlas Search. For more: https://mongodb.ac.cn/docs/atlas/atlas-vector-search/vector-search-stage/

Parameters
  • query (str) – Text to look up documents similar to.

  • k (int) – (Optional) number of documents to return. Defaults to 4.

  • pre_filter (Optional[Dict]) – (Optional) dictionary of argument(s) to prefilter document fields on.

  • post_filter_pipeline (Optional[List[Dict]]) – (Optional) Pipeline of MongoDB aggregation stages following the vectorSearch stage.

  • kwargs (Any) –

Returns

List of documents most similar to the query and their scores.

Return type

List[Tuple[Document, float]]

streaming_upsert(items: Iterable[Document], /, batch_size: int, **kwargs: Any) Iterator[UpsertResponse]

Beta

Added in 0.2.11. The API is subject to change.

Upsert documents in a streaming fashion.

Parameters
  • items (Iterable[Document]) – Iterable of Documents to add to the vectorstore.

  • batch_size (int) – The size of each batch to upsert.

  • kwargs (Any) – Additional keyword arguments. kwargs should only include parameters that are common to all documents. (e.g., timeout for indexing, retry policy, etc.) kwargs should not include ids to avoid ambiguous semantics. Instead, the ID should be provided as part of the Document object.

Yields

UpsertResponse – A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.

Return type

Iterator[UpsertResponse]

New in version 0.2.11.

upsert(items: Sequence[Document], /, **kwargs: Any) UpsertResponse

Beta

Added in 0.2.11. The API is subject to change.

Add or update documents in the vectorstore.

The upsert functionality should utilize the ID field of the Document object if it is provided. If the ID is not provided, the upsert method is free to generate an ID for the document.

When an ID is specified and the document already exists in the vectorstore, the upsert method should update the document with the new data. If the document does not exist, the upsert method should add the document to the vectorstore.

Parameters
  • items (Sequence[Document]) – Sequence of Documents to add to the vectorstore.

  • kwargs (Any) – Additional keyword arguments.

Returns

A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.

Return type

UpsertResponse

New in version 0.2.11.

Examples using MongoDBAtlasVectorSearch