langchain_community.vectorstores.upstash
.UpstashVectorStore¶
- class langchain_community.vectorstores.upstash.UpstashVectorStore(text_key: str = 'text', index: Optional[Index] = None, async_index: Optional[AsyncIndex] = None, index_url: Optional[str] = None, index_token: Optional[str] = None, embedding: Optional[Union[Embeddings, bool]] = None, *, namespace: str = '')[source]¶
Upstash Vector vector store
To use, the
upstash-vector
python package must be installed.Also an Upstash Vector index is required. First create a new Upstash Vector index and copy the index_url and index_token variables. Then either pass them through the constructor or set the environment variables UPSTASH_VECTOR_REST_URL and UPSTASH_VECTOR_REST_TOKEN.
Example
from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import UpstashVectorStore embeddings = OpenAIEmbeddings(model="text-embedding-3-large") vectorstore = UpstashVectorStore( embedding=embeddings, index_url="...", index_token="..." ) # or import os os.environ["UPSTASH_VECTOR_REST_URL"] = "..." os.environ["UPSTASH_VECTOR_REST_TOKEN"] = "..." vectorstore = UpstashVectorStore( embedding=embeddings )
Constructor for UpstashVectorStore.
If index or index_url and index_token are not provided, the constructor will attempt to create an index using the environment variables UPSTASH_VECTOR_REST_URL`and `UPSTASH_VECTOR_REST_TOKEN.
- Parameters
text_key (str) – Key to store the text in metadata.
index (Optional[Index]) – UpstashVector Index object.
async_index (Optional[AsyncIndex]) – UpstashVector AsyncIndex object, provide only if async
needed (functions are) –
index_url (Optional[str]) – URL of the UpstashVector index.
index_token (Optional[str]) – Token of the UpstashVector index.
embedding (Optional[Union[Embeddings, bool]]) – Embeddings object or a boolean. When false, no embedding is applied. If true, Upstash embeddings are used. When Upstash embeddings are used, text is sent directly to Upstash and embedding is applied there instead of embedding in Langchain.
namespace (str) – Namespace to use from the index.
Example
from langchain_community.vectorstores.upstash import UpstashVectorStore from langchain_community.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = UpstashVectorStore( embedding=embeddings, index_url="...", index_token="...", namespace="..." ) # With an existing index from upstash_vector import Index index = Index(url="...", token="...") vectorstore = UpstashVectorStore( embedding=embeddings, index=index, namespace="..." )
Attributes
embeddings
Access the query embedding object if available.
Methods
__init__
([text_key, index, async_index, ...])Constructor for UpstashVectorStore.
aadd_documents
(documents[, ids, batch_size, ...])Get the embeddings for the documents and add them to the vectorstore.
aadd_texts
(texts[, metadatas, ids, ...])Get the embeddings for the texts and add them to the vectorstore.
add_documents
(documents[, ids, batch_size, ...])Get the embeddings for the documents and add them to the vectorstore.
add_texts
(texts[, metadatas, ids, ...])Get the embeddings for the texts and add them to the vectorstore.
adelete
([ids, delete_all, batch_size, namespace])Delete by vector IDs
afrom_documents
(documents, embedding, **kwargs)Async return VectorStore initialized from documents and embeddings.
afrom_texts
(texts, embedding[, metadatas, ...])Create a new UpstashVectorStore from a list of texts.
aget_by_ids
(ids, /)Async get documents by their IDs.
ainfo
()Get statistics about the index.
amax_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Async return docs most similar to query using a specified search type.
asimilarity_search
(query[, k, filter, namespace])Return documents most similar to query.
asimilarity_search_by_vector
(embedding[, k, ...])Return documents closest to the given embedding.
Return texts whose embedding is closest to the given embedding
Async return docs and relevance scores in the range [0, 1].
asimilarity_search_with_score
(query[, k, ...])Retrieve texts most similar to query and convert the result to Document objects.
astreaming_upsert
(items, /, batch_size, **kwargs)aupsert
(items, /, **kwargs)delete
([ids, delete_all, batch_size, namespace])Delete by vector IDs
from_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
from_texts
(texts, embedding[, metadatas, ...])Create a new UpstashVectorStore from a list of texts.
get_by_ids
(ids, /)Get documents by their IDs.
info
()Get statistics about the index.
max_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
search
(query, search_type, **kwargs)Return docs most similar to query using a specified search type.
similarity_search
(query[, k, filter, namespace])Return documents most similar to query.
similarity_search_by_vector
(embedding[, k, ...])Return documents closest to the given embedding.
similarity_search_by_vector_with_score
(embedding)Return texts whose embedding is closest to the given embedding
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score
(query[, k, ...])Retrieve texts most similar to query and convert the result to Document objects.
streaming_upsert
(items, /, batch_size, **kwargs)upsert
(items, /, **kwargs)- __init__(text_key: str = 'text', index: Optional[Index] = None, async_index: Optional[AsyncIndex] = None, index_url: Optional[str] = None, index_token: Optional[str] = None, embedding: Optional[Union[Embeddings, bool]] = None, *, namespace: str = '')[source]¶
Constructor for UpstashVectorStore.
If index or index_url and index_token are not provided, the constructor will attempt to create an index using the environment variables UPSTASH_VECTOR_REST_URL`and `UPSTASH_VECTOR_REST_TOKEN.
- Parameters
text_key (str) – Key to store the text in metadata.
index (Optional[Index]) – UpstashVector Index object.
async_index (Optional[AsyncIndex]) – UpstashVector AsyncIndex object, provide only if async
needed (functions are) –
index_url (Optional[str]) – URL of the UpstashVector index.
index_token (Optional[str]) – Token of the UpstashVector index.
embedding (Optional[Union[Embeddings, bool]]) – Embeddings object or a boolean. When false, no embedding is applied. If true, Upstash embeddings are used. When Upstash embeddings are used, text is sent directly to Upstash and embedding is applied there instead of embedding in Langchain.
namespace (str) – Namespace to use from the index.
Example
from langchain_community.vectorstores.upstash import UpstashVectorStore from langchain_community.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = UpstashVectorStore( embedding=embeddings, index_url="...", index_token="...", namespace="..." ) # With an existing index from upstash_vector import Index index = Index(url="...", token="...") vectorstore = UpstashVectorStore( embedding=embeddings, index=index, namespace="..." )
- async aadd_documents(documents: Iterable[Document], ids: Optional[List[str]] = None, batch_size: int = 32, embedding_chunk_size: int = 1000, *, namespace: Optional[str] = None, **kwargs: Any) List[str] [source]¶
Get the embeddings for the documents and add them to the vectorstore.
Documents are sent to the embeddings object in batches of size embedding_chunk_size. The embeddings are then upserted into the vectorstore in batches of size batch_size.
- Parameters
documents (Iterable[Document]) – Iterable of Documents to add to the vectorstore.
batch_size (int) – Batch size to use when upserting the embeddings.
request. (Upstash supports at max 1000 vectors per) –
embedding_batch_size – Chunk size to use when embedding the texts.
namespace (Optional[str]) – Namespace to use from the index.
ids (Optional[List[str]]) –
embedding_chunk_size (int) –
kwargs (Any) –
- Returns
List of ids from adding the texts into the vectorstore.
- Return type
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 32, embedding_chunk_size: int = 1000, *, namespace: Optional[str] = None, **kwargs: Any) List[str] [source]¶
Get the embeddings for the texts and add them to the vectorstore.
Texts are sent to the embeddings object in batches of size embedding_chunk_size. The embeddings are then upserted into the vectorstore in batches of size batch_size.
- Parameters
texts (Iterable[str]) – Iterable of strings to add to the vectorstore.
metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts.
ids (Optional[List[str]]) – Optional list of ids to associate with the texts.
batch_size (int) – Batch size to use when upserting the embeddings.
request. (Upstash supports at max 1000 vectors per) –
embedding_batch_size – Chunk size to use when embedding the texts.
namespace (Optional[str]) – Namespace to use from the index.
embedding_chunk_size (int) –
kwargs (Any) –
- Returns
List of ids from adding the texts into the vectorstore.
- Return type
List[str]
- add_documents(documents: List[Document], ids: Optional[List[str]] = None, batch_size: int = 32, embedding_chunk_size: int = 1000, *, namespace: Optional[str] = None, **kwargs: Any) List[str] [source]¶
Get the embeddings for the documents and add them to the vectorstore.
Documents are sent to the embeddings object in batches of size embedding_chunk_size. The embeddings are then upserted into the vectorstore in batches of size batch_size.
- Parameters
documents (List[Document]) – Iterable of Documents to add to the vectorstore.
batch_size (int) – Batch size to use when upserting the embeddings.
request. (Upstash supports at max 1000 vectors per) –
embedding_batch_size – Chunk size to use when embedding the texts.
namespace (Optional[str]) – Namespace to use from the index.
ids (Optional[List[str]]) –
embedding_chunk_size (int) –
kwargs (Any) –
- Returns
List of ids from adding the texts into the vectorstore.
- Return type
List[str]
- add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 32, embedding_chunk_size: int = 1000, *, namespace: Optional[str] = None, **kwargs: Any) List[str] [source]¶
Get the embeddings for the texts and add them to the vectorstore.
Texts are sent to the embeddings object in batches of size embedding_chunk_size. The embeddings are then upserted into the vectorstore in batches of size batch_size.
- Parameters
texts (Iterable[str]) – Iterable of strings to add to the vectorstore.
metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts.
ids (Optional[List[str]]) – Optional list of ids to associate with the texts.
batch_size (int) – Batch size to use when upserting the embeddings.
request. (Upstash supports at max 1000 vectors per) –
embedding_batch_size – Chunk size to use when embedding the texts.
namespace (Optional[str]) – Namespace to use from the index.
embedding_chunk_size (int) –
kwargs (Any) –
- Returns
List of ids from adding the texts into the vectorstore.
- Return type
List[str]
- async adelete(ids: Optional[List[str]] = None, delete_all: Optional[bool] = None, batch_size: Optional[int] = 1000, *, namespace: Optional[str] = None, **kwargs: Any) None [source]¶
Delete by vector IDs
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
delete_all (Optional[bool]) – Delete all vectors in the index.
batch_size (Optional[int]) – Batch size to use when deleting the embeddings.
namespace (Optional[str]) – Namespace to use from the index.
request. (Upstash supports at max 1000 deletions per) –
kwargs (Any) –
- Return type
None
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Async return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) – List of Documents to add to the vectorstore.
embedding (Embeddings) – Embedding function to use.
kwargs (Any) – Additional keyword arguments.
- Returns
VectorStore initialized from documents and embeddings.
- Return type
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, embedding_chunk_size: int = 1000, batch_size: int = 32, text_key: str = 'text', index: Optional[Index] = None, async_index: Optional[AsyncIndex] = None, index_url: Optional[str] = None, index_token: Optional[str] = None, *, namespace: str = '', **kwargs: Any) UpstashVectorStore [source]¶
Create a new UpstashVectorStore from a list of texts.
Example
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
ids (Optional[List[str]]) –
embedding_chunk_size (int) –
batch_size (int) –
text_key (str) –
index (Optional[Index]) –
async_index (Optional[AsyncIndex]) –
index_url (Optional[str]) –
index_token (Optional[str]) –
namespace (str) –
kwargs (Any) –
- Return type
- async aget_by_ids(ids: Sequence[str], /) List[Document] ¶
Async get documents by their IDs.
The returned documents are expected to have the ID field set to the ID of the document in the vector store.
Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.
Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.
This method should NOT raise exceptions if no documents are found for some IDs.
- Parameters
ids (Sequence[str]) – List of ids to retrieve.
- Returns
List of Documents.
- Return type
List[Document]
New in version 0.2.11.
- async ainfo() InfoResult [source]¶
Get statistics about the index.
- Returns
total number of vectors
total number of vectors waiting to be indexed
total size of the index on disk in bytes
dimension count for the index
similarity function selected for the index
- Return type
InfoResult
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[str] = None, *, namespace: Optional[str] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[str]) – Optional metadata filter in str format
namespace (Optional[str]) – Namespace to use from the index.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- async amax_marginal_relevance_search_by_vector(embedding: Union[List[float], str], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[str] = None, *, namespace: Optional[str] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding (Union[List[float], str]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[str]) – Optional metadata filter in str format
namespace (Optional[str]) – Namespace to use from the index.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- as_retriever(**kwargs: Any) VectorStoreRetriever ¶
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters
**kwargs (Any) –
Keyword arguments to pass to the search function. Can include: search_type (Optional[str]): Defines the type of search that
the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
- search_kwargs (Optional[Dict]): Keyword arguments to pass to the
- search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
- fetch_k: Amount of documents to pass to MMR algorithm
(Default: 20)
- lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
- Returns
Retriever class for VectorStore.
- Return type
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Async return docs most similar to query using a specified search type.
- Parameters
query (str) – Input text.
search_type (str) – Type of search to perform. Can be “similarity”, “mmr”, or “similarity_score_threshold”.
**kwargs (Any) – Arguments to pass to the search method.
- Returns
List of Documents most similar to the query.
- Raises
ValueError – If search_type is not one of “similarity”, “mmr”, or “similarity_score_threshold”.
- Return type
List[Document]
- async asimilarity_search(query: str, k: int = 4, filter: Optional[str] = None, *, namespace: Optional[str] = None, **kwargs: Any) List[Document] [source]¶
Return documents most similar to query.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[str]) – Optional metadata filter in str format
namespace (Optional[str]) – Namespace to use from the index.
kwargs (Any) –
- Returns
List of Documents most similar to the query
- Return type
List[Document]
- async asimilarity_search_by_vector(embedding: Union[List[float], str], k: int = 4, filter: Optional[str] = None, *, namespace: Optional[str] = None, **kwargs: Any) List[Document] [source]¶
Return documents closest to the given embedding.
- Parameters
embedding (Union[List[float], str]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[str]) – Optional metadata filter in str format
namespace (Optional[str]) – Namespace to use from the index.
kwargs (Any) –
- Returns
List of Documents most similar to the query
- Return type
List[Document]
- async asimilarity_search_by_vector_with_score(embedding: Union[List[float], str], k: int = 4, filter: Optional[str] = None, *, namespace: Optional[str] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Return texts whose embedding is closest to the given embedding
- Parameters
embedding (Union[List[float], str]) –
k (int) –
filter (Optional[str]) –
namespace (Optional[str]) –
kwargs (Any) –
- Return type
List[Tuple[Document, float]]
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Async return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – Input text.
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- async asimilarity_search_with_score(query: str, k: int = 4, filter: Optional[str] = None, *, namespace: Optional[str] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Retrieve texts most similar to query and convert the result to Document objects.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[str]) – Optional metadata filter in str format
namespace (Optional[str]) – Namespace to use from the index.
kwargs (Any) –
- Returns
List of Documents most similar to the query and score for each
- Return type
List[Tuple[Document, float]]
- astreaming_upsert(items: AsyncIterable[Document], /, batch_size: int, **kwargs: Any) AsyncIterator[UpsertResponse] ¶
Beta
Added in 0.2.11. The API is subject to change.
Upsert documents in a streaming fashion. Async version of streaming_upsert.
- Parameters
items (AsyncIterable[Document]) – Iterable of Documents to add to the vectorstore.
batch_size (int) – The size of each batch to upsert.
kwargs (Any) – Additional keyword arguments. kwargs should only include parameters that are common to all documents. (e.g., timeout for indexing, retry policy, etc.) kwargs should not include ids to avoid ambiguous semantics. Instead the ID should be provided as part of the Document object.
- Yields
UpsertResponse – A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.
- Return type
AsyncIterator[UpsertResponse]
New in version 0.2.11.
- async aupsert(items: Sequence[Document], /, **kwargs: Any) UpsertResponse ¶
Beta
Added in 0.2.11. The API is subject to change.
Add or update documents in the vectorstore. Async version of upsert.
The upsert functionality should utilize the ID field of the Document object if it is provided. If the ID is not provided, the upsert method is free to generate an ID for the document.
When an ID is specified and the document already exists in the vectorstore, the upsert method should update the document with the new data. If the document does not exist, the upsert method should add the document to the vectorstore.
- Parameters
items (Sequence[Document]) – Sequence of Documents to add to the vectorstore.
kwargs (Any) – Additional keyword arguments.
- Returns
A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.
- Return type
New in version 0.2.11.
- delete(ids: Optional[List[str]] = None, delete_all: Optional[bool] = None, batch_size: Optional[int] = 1000, *, namespace: Optional[str] = None, **kwargs: Any) None [source]¶
Delete by vector IDs
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
delete_all (Optional[bool]) – Delete all vectors in the index.
batch_size (Optional[int]) – Batch size to use when deleting the embeddings.
namespace (Optional[str]) – Namespace to use from the index.
request. (Upstash supports at max 1000 deletions per) –
kwargs (Any) –
- Return type
None
- classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) – List of Documents to add to the vectorstore.
embedding (Embeddings) – Embedding function to use.
kwargs (Any) – Additional keyword arguments.
- Returns
VectorStore initialized from documents and embeddings.
- Return type
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, embedding_chunk_size: int = 1000, batch_size: int = 32, text_key: str = 'text', index: Optional[Index] = None, async_index: Optional[AsyncIndex] = None, index_url: Optional[str] = None, index_token: Optional[str] = None, *, namespace: str = '', **kwargs: Any) UpstashVectorStore [source]¶
Create a new UpstashVectorStore from a list of texts.
Example
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
ids (Optional[List[str]]) –
embedding_chunk_size (int) –
batch_size (int) –
text_key (str) –
index (Optional[Index]) –
async_index (Optional[AsyncIndex]) –
index_url (Optional[str]) –
index_token (Optional[str]) –
namespace (str) –
kwargs (Any) –
- Return type
- get_by_ids(ids: Sequence[str], /) List[Document] ¶
Get documents by their IDs.
The returned documents are expected to have the ID field set to the ID of the document in the vector store.
Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.
Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.
This method should NOT raise exceptions if no documents are found for some IDs.
- Parameters
ids (Sequence[str]) – List of ids to retrieve.
- Returns
List of Documents.
- Return type
List[Document]
New in version 0.2.11.
- info() InfoResult [source]¶
Get statistics about the index.
- Returns
total number of vectors
total number of vectors waiting to be indexed
total size of the index on disk in bytes
dimension count for the index
similarity function selected for the index
- Return type
InfoResult
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[str] = None, *, namespace: Optional[str] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[str]) – Optional metadata filter in str format
namespace (Optional[str]) – Namespace to use from the index.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- max_marginal_relevance_search_by_vector(embedding: Union[List[float], str], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[str] = None, *, namespace: Optional[str] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding (Union[List[float], str]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[str]) – Optional metadata filter in str format
namespace (Optional[str]) – Namespace to use from the index.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- search(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using a specified search type.
- Parameters
query (str) – Input text
search_type (str) – Type of search to perform. Can be “similarity”, “mmr”, or “similarity_score_threshold”.
**kwargs (Any) – Arguments to pass to the search method.
- Returns
List of Documents most similar to the query.
- Raises
ValueError – If search_type is not one of “similarity”, “mmr”, or “similarity_score_threshold”.
- Return type
List[Document]
- similarity_search(query: str, k: int = 4, filter: Optional[str] = None, *, namespace: Optional[str] = None, **kwargs: Any) List[Document] [source]¶
Return documents most similar to query.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[str]) – Optional metadata filter in str format
namespace (Optional[str]) – Namespace to use from the index.
kwargs (Any) –
- Returns
List of Documents most similar to the query and score for each
- Return type
List[Document]
- similarity_search_by_vector(embedding: Union[List[float], str], k: int = 4, filter: Optional[str] = None, *, namespace: Optional[str] = None, **kwargs: Any) List[Document] [source]¶
Return documents closest to the given embedding.
- Parameters
embedding (Union[List[float], str]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[str]) – Optional metadata filter in str format
namespace (Optional[str]) – Namespace to use from the index.
kwargs (Any) –
- Returns
List of Documents most similar to the query
- Return type
List[Document]
- similarity_search_by_vector_with_score(embedding: Union[List[float], str], k: int = 4, filter: Optional[str] = None, *, namespace: Optional[str] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Return texts whose embedding is closest to the given embedding
- Parameters
embedding (Union[List[float], str]) –
k (int) –
filter (Optional[str]) –
namespace (Optional[str]) –
kwargs (Any) –
- Return type
List[Tuple[Document, float]]
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – Input text.
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs.
- Returns
List of Tuples of (doc, similarity_score).
- Return type
List[Tuple[Document, float]]
- similarity_search_with_score(query: str, k: int = 4, filter: Optional[str] = None, *, namespace: Optional[str] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Retrieve texts most similar to query and convert the result to Document objects.
- Parameters
query (str) – Text to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[str]) – Optional metadata filter in str format
namespace (Optional[str]) – Namespace to use from the index.
kwargs (Any) –
- Returns
List of Documents most similar to the query and score for each
- Return type
List[Tuple[Document, float]]
- streaming_upsert(items: Iterable[Document], /, batch_size: int, **kwargs: Any) Iterator[UpsertResponse] ¶
Beta
Added in 0.2.11. The API is subject to change.
Upsert documents in a streaming fashion.
- Parameters
items (Iterable[Document]) – Iterable of Documents to add to the vectorstore.
batch_size (int) – The size of each batch to upsert.
kwargs (Any) – Additional keyword arguments. kwargs should only include parameters that are common to all documents. (e.g., timeout for indexing, retry policy, etc.) kwargs should not include ids to avoid ambiguous semantics. Instead, the ID should be provided as part of the Document object.
- Yields
UpsertResponse – A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.
- Return type
Iterator[UpsertResponse]
New in version 0.2.11.
- upsert(items: Sequence[Document], /, **kwargs: Any) UpsertResponse ¶
Beta
Added in 0.2.11. The API is subject to change.
Add or update documents in the vectorstore.
The upsert functionality should utilize the ID field of the Document object if it is provided. If the ID is not provided, the upsert method is free to generate an ID for the document.
When an ID is specified and the document already exists in the vectorstore, the upsert method should update the document with the new data. If the document does not exist, the upsert method should add the document to the vectorstore.
- Parameters
items (Sequence[Document]) – Sequence of Documents to add to the vectorstore.
kwargs (Any) – Additional keyword arguments.
- Returns
A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.
- Return type
New in version 0.2.11.