langchain_community.vectorstores.thirdai_neuraldb.NeuralDBVectorStore¶

class langchain_community.vectorstores.thirdai_neuraldb.NeuralDBVectorStore(db: Any)[source]¶

Vectorstore that uses ThirdAI’s NeuralDB.

To use, you should have the thirdai[neural_db] python package installed.

Example

from langchain_community.vectorstores import NeuralDBVectorStore
from thirdai import neural_db as ndb

db = ndb.NeuralDB()
vectorstore = NeuralDBVectorStore(db=db)

Attributes

db

NeuralDB instance

embeddings

Access the query embedding object if available.

Methods

__init__(db)

aadd_documents(documents, **kwargs)

Async run more documents through the embeddings and add to the vectorstore.

aadd_texts(texts[, metadatas])

Async run more texts through the embeddings and add to the vectorstore.

add_documents(documents, **kwargs)

Add or update documents in the vectorstore.

add_texts(texts[, metadatas])

Run more texts through the embeddings and add to the vectorstore.

adelete([ids])

Async delete by vector ID or other criteria.

afrom_documents(documents, embedding, **kwargs)

Async return VectorStore initialized from documents and embeddings.

afrom_texts(texts, embedding[, metadatas])

Async return VectorStore initialized from texts and embeddings.

aget_by_ids(ids, /)

Async get documents by their IDs.

amax_marginal_relevance_search(query[, k, ...])

Async return docs selected using the maximal marginal relevance.

amax_marginal_relevance_search_by_vector(...)

Async return docs selected using the maximal marginal relevance.

as_retriever(**kwargs)

Return VectorStoreRetriever initialized from this VectorStore.

asearch(query, search_type, **kwargs)

Async return docs most similar to query using a specified search type.

asimilarity_search(query[, k])

Async return docs most similar to query.

asimilarity_search_by_vector(embedding[, k])

Async return docs most similar to embedding vector.

asimilarity_search_with_relevance_scores(query)

Async return docs and relevance scores in the range [0, 1].

asimilarity_search_with_score(*args, **kwargs)

Async run similarity search with distance.

associate(source, target)

The vectorstore associates a source phrase with a target phrase.

associate_batch(text_pairs)

Given a batch of (source, target) pairs, the vectorstore associates each source phrase with the corresponding target phrase.

astreaming_upsert(items, /, batch_size, **kwargs)

aupsert(items, /, **kwargs)

delete([ids])

Delete by vector ID or other criteria.

from_checkpoint(checkpoint[, thirdai_key])

Create a NeuralDBVectorStore with a base model from a saved checkpoint

from_documents(documents, embedding, **kwargs)

Return VectorStore initialized from documents and embeddings.

from_scratch([thirdai_key])

Create a NeuralDBVectorStore from scratch.

from_texts(texts, embedding[, metadatas])

Return VectorStore initialized from texts and embeddings.

get_by_ids(ids, /)

Get documents by their IDs.

insert(sources[, train, fast_mode])

Inserts files / document sources into the vectorstore.

max_marginal_relevance_search(query[, k, ...])

Return docs selected using the maximal marginal relevance.

max_marginal_relevance_search_by_vector(...)

Return docs selected using the maximal marginal relevance.

save(path)

Saves a NeuralDB instance to disk.

search(query, search_type, **kwargs)

Return docs most similar to query using a specified search type.

similarity_search(query[, k])

Retrieve {k} contexts with for a given query

similarity_search_by_vector(embedding[, k])

Return docs most similar to embedding vector.

similarity_search_with_relevance_scores(query)

Return docs and relevance scores in the range [0, 1].

similarity_search_with_score(*args, **kwargs)

Run similarity search with distance.

streaming_upsert(items, /, batch_size, **kwargs)

upsert(items, /, **kwargs)

upvote(query, document_id)

The vectorstore upweights the score of a document for a specific query.

upvote_batch(query_id_pairs)

Given a batch of (query, document id) pairs, the vectorstore upweights the scores of the document for the corresponding queries.

validate_environments(values)

Validate ThirdAI environment variables.

Parameters

db (Any) –

__init__(db: Any) None[source]¶
Parameters

db (Any) –

Return type

None

async aadd_documents(documents: List[Document], **kwargs: Any) List[str]¶

Async run more documents through the embeddings and add to the vectorstore.

Parameters
  • documents (List[Document]) – Documents to add to the vectorstore.

  • kwargs (Any) – Additional keyword arguments.

Returns

List of IDs of the added texts.

Raises

ValueError – If the number of IDs does not match the number of documents.

Return type

List[str]

async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str]¶

Async run more texts through the embeddings and add to the vectorstore.

Parameters
  • texts (Iterable[str]) – Iterable of strings to add to the vectorstore.

  • metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts. Default is None.

  • **kwargs (Any) – vectorstore specific parameters.

Returns

List of ids from adding the texts into the vectorstore.

Raises
  • ValueError – If the number of metadatas does not match the number of texts.

  • ValueError – If the number of ids does not match the number of texts.

Return type

List[str]

add_documents(documents: List[Document], **kwargs: Any) List[str]¶

Add or update documents in the vectorstore.

Parameters
  • documents (List[Document]) – Documents to add to the vectorstore.

  • kwargs (Any) – Additional keyword arguments. if kwargs contains ids and documents contain ids, the ids in the kwargs will receive precedence.

Returns

List of IDs of the added texts.

Raises

ValueError – If the number of ids does not match the number of documents.

Return type

List[str]

add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str][source]¶

Run more texts through the embeddings and add to the vectorstore.

Parameters
  • texts (Iterable[str]) – Iterable of strings to add to the vectorstore.

  • metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts.

  • kwargs (Any) – vectorstore specific parameters

Returns

List of ids from adding the texts into the vectorstore.

Return type

List[str]

async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool]¶

Async delete by vector ID or other criteria.

Parameters
  • ids (Optional[List[str]]) – List of ids to delete. If None, delete all. Default is None.

  • **kwargs (Any) – Other keyword arguments that subclasses might use.

Returns

True if deletion is successful, False otherwise, None if not implemented.

Return type

Optional[bool]

async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST¶

Async return VectorStore initialized from documents and embeddings.

Parameters
  • documents (List[Document]) – List of Documents to add to the vectorstore.

  • embedding (Embeddings) – Embedding function to use.

  • kwargs (Any) – Additional keyword arguments.

Returns

VectorStore initialized from documents and embeddings.

Return type

VectorStore

async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST¶

Async return VectorStore initialized from texts and embeddings.

Parameters
  • texts (List[str]) – Texts to add to the vectorstore.

  • embedding (Embeddings) – Embedding function to use.

  • metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts. Default is None.

  • kwargs (Any) – Additional keyword arguments.

Returns

VectorStore initialized from texts and embeddings.

Return type

VectorStore

async aget_by_ids(ids: Sequence[str], /) List[Document]¶

Async get documents by their IDs.

The returned documents are expected to have the ID field set to the ID of the document in the vector store.

Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.

Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.

This method should NOT raise exceptions if no documents are found for some IDs.

Parameters

ids (Sequence[str]) – List of ids to retrieve.

Returns

List of Documents.

Return type

List[Document]

New in version 0.2.11.

Async return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters
  • query (str) – Text to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • kwargs (Any) –

Returns

List of Documents selected by maximal marginal relevance.

Return type

List[Document]

async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document]¶

Async return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents selected by maximal marginal relevance.

Return type

List[Document]

as_retriever(**kwargs: Any) VectorStoreRetriever¶

Return VectorStoreRetriever initialized from this VectorStore.

Parameters

**kwargs (Any) –

Keyword arguments to pass to the search function. Can include: search_type (Optional[str]): Defines the type of search that

the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.

search_kwargs (Optional[Dict]): Keyword arguments to pass to the
search function. Can include things like:

k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold

for similarity_score_threshold

fetch_k: Amount of documents to pass to MMR algorithm

(Default: 20)

lambda_mult: Diversity of results returned by MMR;

1 for minimum diversity and 0 for maximum. (Default: 0.5)

filter: Filter by document metadata

Returns

Retriever class for VectorStore.

Return type

VectorStoreRetriever

Examples:

# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 6, 'lambda_mult': 0.25}
)

# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 5, 'fetch_k': 50}
)

# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
    search_type="similarity_score_threshold",
    search_kwargs={'score_threshold': 0.8}
)

# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={'k': 1})

# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
    search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}}
)
async asearch(query: str, search_type: str, **kwargs: Any) List[Document]¶

Async return docs most similar to query using a specified search type.

Parameters
  • query (str) – Input text.

  • search_type (str) – Type of search to perform. Can be “similarity”, “mmr”, or “similarity_score_threshold”.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents most similar to the query.

Raises

ValueError – If search_type is not one of “similarity”, “mmr”, or “similarity_score_threshold”.

Return type

List[Document]

Async return docs most similar to query.

Parameters
  • query (str) – Input text.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents most similar to the query.

Return type

List[Document]

async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document]¶

Async return docs most similar to embedding vector.

Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents most similar to the query vector.

Return type

List[Document]

async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]]¶

Async return docs and relevance scores in the range [0, 1].

0 is dissimilar, 1 is most similar.

Parameters
  • query (str) – Input text.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) –

    kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to

    filter the resulting set of retrieved docs

Returns

List of Tuples of (doc, similarity_score)

Return type

List[Tuple[Document, float]]

async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]]¶

Async run similarity search with distance.

Parameters
  • *args (Any) – Arguments to pass to the search method.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Tuples of (doc, similarity_score).

Return type

List[Tuple[Document, float]]

associate(source: str, target: str)[source]¶

The vectorstore associates a source phrase with a target phrase. When the vectorstore sees the source phrase, it will also consider results that are relevant to the target phrase.

Parameters
  • source (str) – text to associate to target.

  • target (str) – text to associate source to.

associate_batch(text_pairs: List[Tuple[str, str]])[source]¶

Given a batch of (source, target) pairs, the vectorstore associates each source phrase with the corresponding target phrase.

Parameters
  • text_pairs (List[Tuple[str, str]]) – list of (source, target) text pairs. For each pair in

  • list (this) –

  • target. (the source will be associated with the) –

astreaming_upsert(items: AsyncIterable[Document], /, batch_size: int, **kwargs: Any) AsyncIterator[UpsertResponse]¶

Beta

Added in 0.2.11. The API is subject to change.

Upsert documents in a streaming fashion. Async version of streaming_upsert.

Parameters
  • items (AsyncIterable[Document]) – Iterable of Documents to add to the vectorstore.

  • batch_size (int) – The size of each batch to upsert.

  • kwargs (Any) – Additional keyword arguments. kwargs should only include parameters that are common to all documents. (e.g., timeout for indexing, retry policy, etc.) kwargs should not include ids to avoid ambiguous semantics. Instead the ID should be provided as part of the Document object.

Yields

UpsertResponse – A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.

Return type

AsyncIterator[UpsertResponse]

New in version 0.2.11.

async aupsert(items: Sequence[Document], /, **kwargs: Any) UpsertResponse¶

Beta

Added in 0.2.11. The API is subject to change.

Add or update documents in the vectorstore. Async version of upsert.

The upsert functionality should utilize the ID field of the Document object if it is provided. If the ID is not provided, the upsert method is free to generate an ID for the document.

When an ID is specified and the document already exists in the vectorstore, the upsert method should update the document with the new data. If the document does not exist, the upsert method should add the document to the vectorstore.

Parameters
  • items (Sequence[Document]) – Sequence of Documents to add to the vectorstore.

  • kwargs (Any) – Additional keyword arguments.

Returns

A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.

Return type

UpsertResponse

New in version 0.2.11.

delete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool]¶

Delete by vector ID or other criteria.

Parameters
  • ids (Optional[List[str]]) – List of ids to delete. If None, delete all. Default is None.

  • **kwargs (Any) – Other keyword arguments that subclasses might use.

Returns

True if deletion is successful, False otherwise, None if not implemented.

Return type

Optional[bool]

classmethod from_checkpoint(checkpoint: Union[str, Path], thirdai_key: Optional[str] = None)[source]¶

Create a NeuralDBVectorStore with a base model from a saved checkpoint

To use, set the THIRDAI_KEY environment variable with your ThirdAI API key, or pass thirdai_key as a named parameter.

Example

from langchain_community.vectorstores import NeuralDBVectorStore

vectorstore = NeuralDBVectorStore.from_checkpoint(
    checkpoint="/path/to/checkpoint.ndb",
    thirdai_key="your-thirdai-key",
)

vectorstore.insert([
    "/path/to/doc.pdf",
    "/path/to/doc.docx",
    "/path/to/doc.csv",
])

documents = vectorstore.similarity_search("AI-driven music therapy")
Parameters
  • checkpoint (Union[str, Path]) –

  • thirdai_key (Optional[str]) –

classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST¶

Return VectorStore initialized from documents and embeddings.

Parameters
  • documents (List[Document]) – List of Documents to add to the vectorstore.

  • embedding (Embeddings) – Embedding function to use.

  • kwargs (Any) – Additional keyword arguments.

Returns

VectorStore initialized from documents and embeddings.

Return type

VectorStore

classmethod from_scratch(thirdai_key: Optional[str] = None, **model_kwargs)[source]¶

Create a NeuralDBVectorStore from scratch.

To use, set the THIRDAI_KEY environment variable with your ThirdAI API key, or pass thirdai_key as a named parameter.

Example

from langchain_community.vectorstores import NeuralDBVectorStore

vectorstore = NeuralDBVectorStore.from_scratch(
    thirdai_key="your-thirdai-key",
)

vectorstore.insert([
    "/path/to/doc.pdf",
    "/path/to/doc.docx",
    "/path/to/doc.csv",
])

documents = vectorstore.similarity_search("AI-driven music therapy")
Parameters

thirdai_key (Optional[str]) –

classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) NeuralDBVectorStore[source]¶

Return VectorStore initialized from texts and embeddings.

Parameters
  • texts (List[str]) –

  • embedding (Embeddings) –

  • metadatas (Optional[List[dict]]) –

  • kwargs (Any) –

Return type

NeuralDBVectorStore

get_by_ids(ids: Sequence[str], /) List[Document]¶

Get documents by their IDs.

The returned documents are expected to have the ID field set to the ID of the document in the vector store.

Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.

Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.

This method should NOT raise exceptions if no documents are found for some IDs.

Parameters

ids (Sequence[str]) – List of ids to retrieve.

Returns

List of Documents.

Return type

List[Document]

New in version 0.2.11.

insert(sources: List[Any], train: bool = True, fast_mode: bool = True, **kwargs)[source]¶

Inserts files / document sources into the vectorstore.

Parameters
  • train (bool) – When True this means that the underlying model in the

  • files. (NeuralDB will undergo unsupervised pretraining on the inserted) –

  • True. (Defaults to) –

  • fast_mode (bool) – Much faster insertion with a slight drop in performance.

  • True. –

  • sources (List[Any]) –

Return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters
  • query (str) – Text to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents selected by maximal marginal relevance.

Return type

List[Document]

max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document]¶

Return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents selected by maximal marginal relevance.

Return type

List[Document]

save(path: str)[source]¶

Saves a NeuralDB instance to disk. Can be loaded into memory by calling NeuralDB.from_checkpoint(path)

Parameters

path (str) – path on disk to save the NeuralDB instance to.

search(query: str, search_type: str, **kwargs: Any) List[Document]¶

Return docs most similar to query using a specified search type.

Parameters
  • query (str) – Input text

  • search_type (str) – Type of search to perform. Can be “similarity”, “mmr”, or “similarity_score_threshold”.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents most similar to the query.

Raises

ValueError – If search_type is not one of “similarity”, “mmr”, or “similarity_score_threshold”.

Return type

List[Document]

Retrieve {k} contexts with for a given query

Parameters
  • query (str) – Query to submit to the model

  • k (int) – The max number of context results to retrieve. Defaults to 10.

  • kwargs (Any) –

Return type

List[Document]

similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document]¶

Return docs most similar to embedding vector.

Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents most similar to the query vector.

Return type

List[Document]

similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]]¶

Return docs and relevance scores in the range [0, 1].

0 is dissimilar, 1 is most similar.

Parameters
  • query (str) – Input text.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) –

    kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to

    filter the resulting set of retrieved docs.

Returns

List of Tuples of (doc, similarity_score).

Return type

List[Tuple[Document, float]]

similarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]]¶

Run similarity search with distance.

Parameters
  • *args (Any) – Arguments to pass to the search method.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Tuples of (doc, similarity_score).

Return type

List[Tuple[Document, float]]

streaming_upsert(items: Iterable[Document], /, batch_size: int, **kwargs: Any) Iterator[UpsertResponse]¶

Beta

Added in 0.2.11. The API is subject to change.

Upsert documents in a streaming fashion.

Parameters
  • items (Iterable[Document]) – Iterable of Documents to add to the vectorstore.

  • batch_size (int) – The size of each batch to upsert.

  • kwargs (Any) – Additional keyword arguments. kwargs should only include parameters that are common to all documents. (e.g., timeout for indexing, retry policy, etc.) kwargs should not include ids to avoid ambiguous semantics. Instead, the ID should be provided as part of the Document object.

Yields

UpsertResponse – A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.

Return type

Iterator[UpsertResponse]

New in version 0.2.11.

upsert(items: Sequence[Document], /, **kwargs: Any) UpsertResponse¶

Beta

Added in 0.2.11. The API is subject to change.

Add or update documents in the vectorstore.

The upsert functionality should utilize the ID field of the Document object if it is provided. If the ID is not provided, the upsert method is free to generate an ID for the document.

When an ID is specified and the document already exists in the vectorstore, the upsert method should update the document with the new data. If the document does not exist, the upsert method should add the document to the vectorstore.

Parameters
  • items (Sequence[Document]) – Sequence of Documents to add to the vectorstore.

  • kwargs (Any) – Additional keyword arguments.

Returns

A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.

Return type

UpsertResponse

New in version 0.2.11.

upvote(query: str, document_id: Union[int, str])[source]¶

The vectorstore upweights the score of a document for a specific query. This is useful for fine-tuning the vectorstore to user behavior.

Parameters
  • query (str) – text to associate with document_id

  • document_id (Union[int, str]) – id of the document to associate query with.

upvote_batch(query_id_pairs: List[Tuple[str, int]])[source]¶

Given a batch of (query, document id) pairs, the vectorstore upweights the scores of the document for the corresponding queries. This is useful for fine-tuning the vectorstore to user behavior.

Parameters
  • query_id_pairs (List[Tuple[str, int]]) – list of (query, document id) pairs. For each pair in

  • list (this) –

  • query. (the model will upweight the document id for the) –

classmethod validate_environments(values: Dict) Dict[source]¶

Validate ThirdAI environment variables.

Parameters

values (Dict) –

Return type

Dict

Examples using NeuralDBVectorStore¶