langchain_community.vectorstores.meilisearch.Meilisearch

class langchain_community.vectorstores.meilisearch.Meilisearch(embedding: Embeddings, client: Optional[Client] = None, url: Optional[str] = None, api_key: Optional[str] = None, index_name: str = 'langchain-demo', text_key: str = 'text', metadata_key: str = 'metadata', *, embedders: Optional[Dict[str, Any]] = None)[source]

Meilisearch 向量存储。

要使用它,您需要安装 meilisearch Python 包,并运行 Meilisearch 实例。

要了解有关 Meilisearch Python 的更多信息,请参阅深入的 Meilisearch Python 文档: https://meilisearch.github.io/meilisearch-python/

有关如何运行 Meilisearch 实例,请参阅以下文档: https://meilisearch.org.cn/docs/learn/getting_started/quick_start

示例

from langchain_community.vectorstores import Meilisearch
from langchain_community.embeddings.openai import OpenAIEmbeddings
import meilisearch

# api_key is optional; provide it if your meilisearch instance requires it
client = meilisearch.Client(url='http://127.0.0.1:7700', api_key='***')
embeddings = OpenAIEmbeddings()
embedders = {
    "theEmbedderName": {
        "source": "userProvided",
        "dimensions": "1536"
    }
}
vectorstore = Meilisearch(
    embedding=embeddings,
    embedders=embedders,
    client=client,
    index_name='langchain_demo',
    text_key='text')

使用 Meilisearch 客户端初始化。

属性

embeddings

如果可用,请访问查询嵌入对象。

方法

__init__(embedding[, client, url, api_key, ...])

使用 Meilisearch 客户端初始化。

aadd_documents(documents, **kwargs)

异步运行更多文档通过嵌入并添加到向量存储。

aadd_texts(texts[, metadatas])

异步运行更多文本通过嵌入并添加到向量存储。

add_documents(documents, **kwargs)

在向量存储中添加或更新文档。

add_texts(texts[, metadatas, ids, embedder_name])

运行更多文本通过嵌入并将它们添加到向量存储中。

adelete([ids])

异步按向量 ID 或其他条件删除。

afrom_documents(documents, embedding, **kwargs)

异步从文档和嵌入初始化 VectorStore。

afrom_texts(texts, embedding[, metadatas])

异步从文本和嵌入初始化 VectorStore。

aget_by_ids(ids, /)

异步按 ID 获取文档。

amax_marginal_relevance_search(query[, k, ...])

异步返回使用最大边际相关性选择的文档。

amax_marginal_relevance_search_by_vector(...)

异步返回使用最大边际相关性选择的文档。

as_retriever(**kwargs)

返回由此 VectorStore 初始化的 VectorStoreRetriever。

asearch(query, search_type, **kwargs)

异步返回与使用指定搜索类型的查询最相似的文档。

asimilarity_search(query[, k])

异步返回与查询最相似的文档。

asimilarity_search_by_vector(embedding[, k])

异步返回与嵌入向量最相似的文档。

asimilarity_search_with_relevance_scores(query)

异步返回范围在 [0, 1] 内的文档和相关性分数。

asimilarity_search_with_score(*args, **kwargs)

异步运行带距离的相似性搜索。

astreaming_upsert(items, /, batch_size, **kwargs)

aupsert(items, /, **kwargs)

delete([ids])

按向量 ID 或其他条件删除。

from_documents(documents, embedding, **kwargs)

返回从文档和嵌入初始化的 VectorStore。

from_texts(texts, embedding[, metadatas, ...])

从原始文档构造 Meilisearch 包装器。

get_by_ids(ids, /)

按 ID 获取文档。

max_marginal_relevance_search(query[, k, ...])

返回使用最大边际相关性选择的文档。

max_marginal_relevance_search_by_vector(...)

返回使用最大边际相关性选择的文档。

search(query, search_type, **kwargs)

返回与使用指定搜索类型的查询最相似的文档。

similarity_search(query[, k, filter, ...])

返回与查询最相似的 meilisearch 文档。

similarity_search_by_vector(embedding[, k, ...])

返回与嵌入向量最相似的 meilisearch 文档。

similarity_search_by_vector_with_scores(...)

返回与嵌入向量最相似的 meilisearch 文档。

similarity_search_with_relevance_scores(query)

返回范围在 [0, 1] 内的文档和相关性分数。

similarity_search_with_score(query[, k, ...])

返回与查询最相似的 meilisearch 文档,以及分数。

streaming_upsert(items, /, batch_size, **kwargs)

upsert(items, /, **kwargs)

参数
  • embedding (Embeddings) –

  • client (Optional[Client]) –

  • url (Optional[str]) –

  • api_key (Optional[str]) –

  • index_name (str) –

  • text_key (str) –

  • metadata_key (str) –

  • embedders (Optional[Dict[str, Any]]) –

__init__(embedding: Embeddings, client: Optional[Client] = None, url: Optional[str] = None, api_key: Optional[str] = None, index_name: str = 'langchain-demo', text_key: str = 'text', metadata_key: str = 'metadata', *, embedders: Optional[Dict[str, Any]] = None)[source]

使用 Meilisearch 客户端初始化。

参数
  • embedding (Embeddings) –

  • client (Optional[Client]) –

  • url (Optional[str]) –

  • api_key (Optional[str]) –

  • index_name (str) –

  • text_key (str) –

  • metadata_key (str) –

  • embedders (Optional[Dict[str, Any]]) –

async aadd_documents(documents: List[Document], **kwargs: Any) List[str]

异步运行更多文档通过嵌入并添加到向量存储。

参数
  • documents (List[Document]) – 要添加到向量存储的文档。

  • kwargs (Any) – 附加关键字参数。

返回

添加文本的 ID 列表。

引发

ValueError – 如果 ID 的数量与文档的数量不匹配。

返回类型

List[str]

async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str]

异步运行更多文本通过嵌入并添加到向量存储。

参数
  • texts (Iterable[str]) – 要添加到向量存储的字符串的可迭代对象。

  • metadatas (Optional[List[dict]]) – 与文本关联的可选元数据列表。默认为 None。

  • **kwargs (Any) – 向量存储特定参数。

返回

从将文本添加到向量存储中获取的 ID 列表。

引发
  • ValueError – 如果元数据的数量与文本的数量不匹配。

  • ValueError – 如果 ID 的数量与文本的数量不匹配。

返回类型

List[str]

add_documents(documents: List[Document], **kwargs: Any) List[str]

在向量存储中添加或更新文档。

参数
  • documents (List[Document]) – 要添加到向量存储的文档。

  • kwargs (Any) – 附加关键字参数。如果 kwargs 包含 ids 并且 documents 包含 ids,则 kwargs 中的 ids 将优先。

返回

添加文本的 ID 列表。

引发

ValueError – 如果 ID 的数量与文档的数量不匹配。

返回类型

List[str]

add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, embedder_name: Optional[str] = 'default', **kwargs: Any) List[str][source]

运行更多文本通过嵌入并将它们添加到向量存储中。

参数
  • texts (Iterable[str]) – 要添加到向量存储的字符串/文本的可迭代对象。

  • embedder_name (Optional[str]) – 嵌入器的名称。默认为“default”。

  • metadatas (Optional[List[dict]]) – 可选的元数据列表。默认为 None。

  • Optional[List[str]] (ids) – 可选的 ID 列表。默认为 None。

  • ids (Optional[List[str]]) –

  • kwargs (Any) –

返回

添加到向量存储的文本的 ID 列表。

返回类型

List[str]

async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool]

异步按向量 ID 或其他条件删除。

参数
  • ids (Optional[List[str]]) – 要删除的 ID 列表。如果为 None,则删除所有。默认为 None。

  • **kwargs (Any) – 子类可能使用的其他关键字参数。

返回

如果删除成功,则为 True,否则为 False,如果未实现,则为 None。

返回类型

Optional[bool]

async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST

异步从文档和嵌入初始化 VectorStore。

参数
  • documents (List[Document]) – 要添加到向量存储的文档列表。

  • embedding (Embeddings) – 要使用的嵌入函数。

  • kwargs (Any) – 附加关键字参数。

返回

从文档和嵌入初始化的 VectorStore。

返回类型

VectorStore

async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST

异步从文本和嵌入初始化 VectorStore。

参数
  • texts (List[str]) – 要添加到向量存储的文本。

  • embedding (Embeddings) – 要使用的嵌入函数。

  • metadatas (Optional[List[dict]]) – 与文本关联的可选元数据列表。默认为 None。

  • kwargs (Any) – 附加关键字参数。

返回

从文本和嵌入初始化的 VectorStore。

返回类型

VectorStore

async aget_by_ids(ids: Sequence[str], /) List[Document]

异步按 ID 获取文档。

返回的文档应将其 ID 字段设置为向量存储中文档的 ID。

如果某些 ID 未找到或存在重复 ID,则返回的文档可能少于请求的数量。

用户不应假设返回文档的顺序与输入 ID 的顺序一致。相反,用户应依赖返回文档的 ID 字段。

如果某些 ID 没有找到文档,此方法不应引发异常。

参数

ids (Sequence[str]) – 要检索的 ID 列表。

返回

文档列表。

返回类型

List[Document]

0.2.11 版本新增功能。

异步返回使用最大边际相关性选择的文档。

最大边际相关性优化查询的相似性和所选文档之间的多样性。

参数
  • query (str) – 用于查找相似文档的文本。

  • k (int) – 要返回的文档数量。默认为 4。

  • fetch_k (int) – 获取以传递给 MMR 算法的文档数量。默认为 20。

  • lambda_mult (float) – 介于 0 和 1 之间的数字,用于确定结果之间多样性的程度,其中 0 对应于最大多样性,1 对应于最小多样性。默认为 0.5。

  • kwargs (Any) –

返回

通过最大边际相关性选择的文档列表。

返回类型

List[Document]

async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document]

异步返回使用最大边际相关性选择的文档。

最大边际相关性优化查询的相似性和所选文档之间的多样性。

参数
  • embedding (List[float]) – 用于查找相似文档的嵌入向量。

  • k (int) – 要返回的文档数量。默认为 4。

  • fetch_k (int) – 获取以传递给 MMR 算法的文档数量。默认为 20。

  • lambda_mult (float) – 介于 0 和 1 之间的数字,用于确定结果之间多样性的程度,其中 0 对应于最大多样性,1 对应于最小多样性。默认为 0.5。

  • **kwargs (Any) – 传递给搜索方法的参数。

返回

通过最大边际相关性选择的文档列表。

返回类型

List[Document]

as_retriever(**kwargs: Any) VectorStoreRetriever

返回由此 VectorStore 初始化的 VectorStoreRetriever。

参数

**kwargs (Any) –

传递给搜索函数的关键字参数。可以包括: search_type (Optional[str]): 定义检索器应执行的搜索类型。

可以是 “similarity”(默认)、“mmr” 或 “similarity_score_threshold”。

search_kwargs (Optional[Dict]): 传递给搜索函数的关键字参数。
可以包括如下内容:

k: 要返回的文档数量(默认值:4) score_threshold: 相似度分数阈值的最小相关性阈值

用于 similarity_score_threshold

fetch_k: 传递给 MMR 算法的文档数量

(默认值:20)

lambda_mult: MMR 返回结果的多样性;

1 表示最小多样性,0 表示最大多样性。(默认值:0.5)

filter: 按文档元数据筛选

返回

VectorStore 的检索器类。

返回类型

VectorStoreRetriever

示例

# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 6, 'lambda_mult': 0.25}
)

# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 5, 'fetch_k': 50}
)

# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
    search_type="similarity_score_threshold",
    search_kwargs={'score_threshold': 0.8}
)

# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={'k': 1})

# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
    search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}}
)
async asearch(query: str, search_type: str, **kwargs: Any) List[Document]

异步返回与使用指定搜索类型的查询最相似的文档。

参数
  • query (str) – 输入文本。

  • search_type (str) – 要执行的搜索类型。可以是 “similarity”、“mmr” 或 “similarity_score_threshold”。

  • **kwargs (Any) – 传递给搜索方法的参数。

返回

与查询最相似的文档列表。

引发

ValueError – 如果 search_type 不是 “similarity”、“mmr” 或 “similarity_score_threshold” 之一。

返回类型

List[Document]

异步返回与查询最相似的文档。

参数
  • query (str) – 输入文本。

  • k (int) – 要返回的文档数量。默认为 4。

  • **kwargs (Any) – 传递给搜索方法的参数。

返回

与查询最相似的文档列表。

返回类型

List[Document]

async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document]

异步返回与嵌入向量最相似的文档。

参数
  • embedding (List[float]) – 用于查找相似文档的嵌入向量。

  • k (int) – 要返回的文档数量。默认为 4。

  • **kwargs (Any) – 传递给搜索方法的参数。

返回

与查询向量最相似的文档列表。

返回类型

List[Document]

async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]]

异步返回范围在 [0, 1] 内的文档和相关性分数。

0 表示不相似,1 表示最相似。

参数
  • query (str) – 输入文本。

  • k (int) – 要返回的文档数量。默认为 4。

  • **kwargs (Any) –

    要传递给相似度搜索的 kwargs。应包括: score_threshold: 可选,介于 0 到 1 之间的浮点值,用于

    筛选检索到的文档结果集

返回

(文档,相似度分数)元组的列表

返回类型

List[Tuple[Document, float]]

async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]]

异步运行带距离的相似性搜索。

参数
  • *args (Any) – 传递给搜索方法的参数。

  • **kwargs (Any) – 传递给搜索方法的参数。

返回

(文档,相似度分数)元组的列表。

返回类型

List[Tuple[Document, float]]

astreaming_upsert(items: AsyncIterable[Document], /, batch_size: int, **kwargs: Any) AsyncIterator[UpsertResponse]

Beta 版本

在 0.2.11 版本中添加。API 可能会发生变化。

以流式方式更新文档。 streaming_upsert 的异步版本。

参数
  • items (AsyncIterable[Document]) – 要添加到向量存储的文档的可迭代对象。

  • batch_size (int) – 每次更新批处理的大小。

  • kwargs (Any) – 附加关键字参数。kwargs 应仅包含所有文档通用的参数。(例如,索引超时、重试策略等)kwargs 不应包含 ID 以避免语义模糊。相反,ID 应作为 Document 对象的一部分提供。

Yields

UpsertResponse – 响应对象,其中包含向量存储中成功添加或更新的 ID 列表,以及未能添加或更新的 ID 列表。

返回类型

AsyncIterator[UpsertResponse]

0.2.11 版本新增功能。

async aupsert(items: Sequence[Document], /, **kwargs: Any) UpsertResponse

Beta 版本

在 0.2.11 版本中添加。API 可能会发生变化。

在向量存储中添加或更新文档。 upsert 的异步版本。

如果提供了 Document 对象的 ID 字段,则 upsert 功能应使用它。如果未提供 ID,则 upsert 方法可以自由地为文档生成 ID。

当指定了 ID 且文档已存在于向量存储中时,upsert 方法应使用新数据更新文档。如果文档不存在,则 upsert 方法应将文档添加到向量存储中。

参数
  • items (Sequence[Document]) – 要添加到向量存储的文档序列。

  • kwargs (Any) – 附加关键字参数。

返回

响应对象,其中包含向量存储中成功添加或更新的 ID 列表,以及未能添加或更新的 ID 列表。

返回类型

UpsertResponse

0.2.11 版本新增功能。

delete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool]

按向量 ID 或其他条件删除。

参数
  • ids (Optional[List[str]]) – 要删除的 ID 列表。如果为 None,则删除所有。默认为 None。

  • **kwargs (Any) – 子类可能使用的其他关键字参数。

返回

如果删除成功,则为 True,否则为 False,如果未实现,则为 None。

返回类型

Optional[bool]

classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST

返回从文档和嵌入初始化的 VectorStore。

参数
  • documents (List[Document]) – 要添加到向量存储的文档列表。

  • embedding (Embeddings) – 要使用的嵌入函数。

  • kwargs (Any) – 附加关键字参数。

返回

从文档和嵌入初始化的 VectorStore。

返回类型

VectorStore

classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, client: Optional[Client] = None, url: Optional[str] = None, api_key: Optional[str] = None, index_name: str = 'langchain-demo', ids: Optional[List[str]] = None, text_key: Optional[str] = 'text', metadata_key: Optional[str] = 'metadata', embedders: Dict[str, Any] = {}, embedder_name: Optional[str] = 'default', **kwargs: Any) Meilisearch[source]

从原始文档构造 Meilisearch 包装器。

这是一个用户友好的界面,用于
  1. 嵌入文档。

  2. 将文档添加到提供的 Meilisearch 索引。

旨在快速入门。

示例

from langchain_community.vectorstores import Meilisearch
from langchain_community.embeddings import OpenAIEmbeddings
import meilisearch

# The environment should be the one specified next to the API key
# in your Meilisearch console
client = meilisearch.Client(url='http://127.0.0.1:7700', api_key='***')
embedding = OpenAIEmbeddings()
embedders: Embedders index setting.
embedder_name: Name of the embedder. Defaults to "default".
docsearch = Meilisearch.from_texts(
    client=client,
    embedding=embedding,
)
参数
  • texts (List[str]) –

  • embedding (Embeddings) –

  • metadatas (Optional[List[dict]]) –

  • client (Optional[Client]) –

  • url (Optional[str]) –

  • api_key (Optional[str]) –

  • index_name (str) –

  • ids (Optional[List[str]]) –

  • text_key (Optional[str]) –

  • metadata_key (Optional[str]) –

  • embedders (Dict[str, Any]) –

  • embedder_name (Optional[str]) –

  • kwargs (Any) –

返回类型

Meilisearch

get_by_ids(ids: Sequence[str], /) List[Document]

按 ID 获取文档。

返回的文档应将其 ID 字段设置为向量存储中文档的 ID。

如果某些 ID 未找到或存在重复 ID,则返回的文档可能少于请求的数量。

用户不应假设返回文档的顺序与输入 ID 的顺序一致。相反,用户应依赖返回文档的 ID 字段。

如果某些 ID 没有找到文档,此方法不应引发异常。

参数

ids (Sequence[str]) – 要检索的 ID 列表。

返回

文档列表。

返回类型

List[Document]

0.2.11 版本新增功能。

返回使用最大边际相关性选择的文档。

最大边际相关性优化查询的相似性和所选文档之间的多样性。

参数
  • query (str) – 用于查找相似文档的文本。

  • k (int) – 要返回的文档数量。默认为 4。

  • fetch_k (int) – 获取以传递给 MMR 算法的文档数量。默认为 20。

  • lambda_mult (float) – 介于 0 和 1 之间的数字,用于确定结果之间多样性的程度,其中 0 对应于最大多样性,1 对应于最小多样性。默认为 0.5。

  • **kwargs (Any) – 传递给搜索方法的参数。

返回

通过最大边际相关性选择的文档列表。

返回类型

List[Document]

max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document]

返回使用最大边际相关性选择的文档。

最大边际相关性优化查询的相似性和所选文档之间的多样性。

参数
  • embedding (List[float]) – 用于查找相似文档的嵌入向量。

  • k (int) – 要返回的文档数量。默认为 4。

  • fetch_k (int) – 获取以传递给 MMR 算法的文档数量。默认为 20。

  • lambda_mult (float) – 介于 0 和 1 之间的数字,用于确定结果之间多样性的程度,其中 0 对应于最大多样性,1 对应于最小多样性。默认为 0.5。

  • **kwargs (Any) – 传递给搜索方法的参数。

返回

通过最大边际相关性选择的文档列表。

返回类型

List[Document]

search(query: str, search_type: str, **kwargs: Any) List[Document]

返回与使用指定搜索类型的查询最相似的文档。

参数
  • query (str) – 输入文本

  • search_type (str) – 要执行的搜索类型。可以是 “similarity”、“mmr” 或 “similarity_score_threshold”。

  • **kwargs (Any) – 传递给搜索方法的参数。

返回

与查询最相似的文档列表。

引发

ValueError – 如果 search_type 不是 “similarity”、“mmr” 或 “similarity_score_threshold” 之一。

返回类型

List[Document]

返回与查询最相似的 meilisearch 文档。

参数
  • query (str) – 用于查找相似文档的查询文本。

  • embedder_name (Optional[str]) – 要使用的嵌入器名称。默认为“default”。

  • k (int) – 要返回的文档数量。默认为 4。

  • filter (Optional[Dict[str, str]]) – 按元数据筛选。默认为 None。

  • kwargs (Any) –

返回

与查询文本最相似的文档列表,以及每个文档的得分。

返回类型

List[Document]

similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[Dict[str, str]] = None, embedder_name: Optional[str] = 'default', **kwargs: Any) List[Document][source]

返回与嵌入向量最相似的 meilisearch 文档。

参数
  • embedding (List[float]) – 用于查找相似文档的嵌入向量。

  • embedder_name (Optional[str]) – 要使用的嵌入器名称。默认为“default”。

  • k (int) – 要返回的文档数量。默认为 4。

  • filter (Optional[Dict[str, str]]) – 按元数据筛选。默认为 None。

  • kwargs (Any) –

返回

与查询最相似的文档列表

向量和每个文档的得分。

返回类型

List[Document]

similarity_search_by_vector_with_scores(embedding: List[float], embedder_name: Optional[str] = 'default', k: int = 4, filter: Optional[Dict[str, Any]] = None, **kwargs: Any) List[Tuple[Document, float]][source]

返回与嵌入向量最相似的 meilisearch 文档。

参数
  • embedding (List[float]) – 用于查找相似文档的嵌入向量。

  • embedder_name (Optional[str]) – 要使用的嵌入器名称。默认为“default”。

  • k (int) – 要返回的文档数量。默认为 4。

  • filter (Optional[Dict[str, str]]) – 按元数据筛选。默认为 None。

  • kwargs (Any) –

返回

与查询最相似的文档列表

向量和每个文档的得分。

返回类型

List[Document]

similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]]

返回范围在 [0, 1] 内的文档和相关性分数。

0 表示不相似,1 表示最相似。

参数
  • query (str) – 输入文本。

  • k (int) – 要返回的文档数量。默认为 4。

  • **kwargs (Any) –

    要传递给相似度搜索的 kwargs。应包括: score_threshold: 可选,介于 0 到 1 之间的浮点值,用于

    筛选检索到的文档结果集。

返回

(文档,相似度分数)元组的列表。

返回类型

List[Tuple[Document, float]]

similarity_search_with_score(query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, embedder_name: Optional[str] = 'default', **kwargs: Any) List[Tuple[Document, float]][source]

返回与查询最相似的 meilisearch 文档,以及分数。

参数
  • query (str) – 用于查找相似文档的查询文本。

  • embedder_name (Optional[str]) – 要使用的嵌入器名称。默认为“default”。

  • k (int) – 要返回的文档数量。默认为 4。

  • filter (Optional[Dict[str, str]]) – 按元数据筛选。默认为 None。

  • kwargs (Any) –

返回

与查询文本最相似的文档列表,以及每个文档的得分。

返回类型

List[Document]

streaming_upsert(items: Iterable[Document], /, batch_size: int, **kwargs: Any) Iterator[UpsertResponse]

Beta 版本

在 0.2.11 版本中添加。API 可能会发生变化。

以流式方式更新文档。

参数
  • items (Iterable[Document]) – 要添加到向量存储的 Document 的可迭代对象。

  • batch_size (int) – 每次更新批处理的大小。

  • kwargs (Any) – 附加的关键字参数。 kwargs 应该只包含所有文档通用的参数。(例如,索引超时,重试策略等)kwargs 不应包含 ids 以避免语义模糊。相反,ID 应该作为 Document 对象的一部分提供。

Yields

UpsertResponse – 响应对象,其中包含向量存储中成功添加或更新的 ID 列表,以及未能添加或更新的 ID 列表。

返回类型

Iterator[UpsertResponse]

0.2.11 版本新增功能。

upsert(items: Sequence[Document], /, **kwargs: Any) UpsertResponse

Beta 版本

在 0.2.11 版本中添加。API 可能会发生变化。

在向量存储中添加或更新文档。

如果提供了 Document 对象的 ID 字段,则 upsert 功能应使用它。如果未提供 ID,则 upsert 方法可以自由地为文档生成 ID。

当指定了 ID 且文档已存在于向量存储中时,upsert 方法应使用新数据更新文档。如果文档不存在,则 upsert 方法应将文档添加到向量存储中。

参数
  • items (Sequence[Document]) – 要添加到向量存储的文档序列。

  • kwargs (Any) – 附加关键字参数。

返回

响应对象,其中包含向量存储中成功添加或更新的 ID 列表,以及未能添加或更新的 ID 列表。

返回类型

UpsertResponse

0.2.11 版本新增功能。

使用 Meilisearch 的示例