langchain_community.vectorstores.hippo.Hippo

class langchain_community.vectorstores.hippo.Hippo(embedding_function: Embeddings, table_name: str = 'test', database_name: str = 'default', number_of_shards: int = 1, number_of_replicas: int = 1, connection_args: Optional[Dict[str, Any]] = None, index_params: Optional[dict] = None, drop_old: Optional[bool] = False)[source]

Hippo 向量存储。

您需要安装 hippo-api 并运行 Hippo。

请访问我们的官方网站了解如何运行 Hippo 实例: https://www.transwarp.cn/starwarp

参数
  • embedding_function (Embeddings) – 用于嵌入文本的函数。

  • table_name (str) – 要使用的 Hippo 表格。默认为“test”。

  • database_name (str) – 要使用的 Hippo 数据库。默认为“default”。

  • number_of_shards (int) – Hippo 表格的分片数量。默认为 1。

  • number_of_replicas (int) – Hippo 表格的副本数量。默认为 1。

  • connection_args (Optional[dict[str, any]]) – 用于此类的连接参数以字典形式提供。

  • index_params (Optional[dict]) – 要使用的索引参数。默认为 IVF_FLAT。

  • drop_old (Optional[bool]) – 是否删除当前集合。默认为 False。

  • primary_field (str) – 主键字段的名称。默认为 “pk”。

  • text_field (str) – 文本字段的名称。默认为 “text”。

  • vector_field (str) – 向量字段的名称。默认为 “vector”。

用于此类的连接参数以字典形式提供,以下是一些选项

host (str): Hippo 实例的主机。默认为 “localhost”。 port (str/int): Hippo 实例的端口。默认为 7788。 user (str): 使用哪个用户连接到 Hippo 实例。如果提供了用户和

密码,我们将在每个 RPC 调用中添加相关的标头。

password (str): 当提供用户时是必需的。与用户对应的密码。

对应的用户。

示例


from langchain_community.vectorstores import Hippo from langchain_community.embeddings import OpenAIEmbeddings

embedding = OpenAIEmbeddings() # 连接到 localhost 上的 hippo 实例 vector_store = Hippo.from_documents(

docs, embedding=embeddings, table_name=”langchain_test”, connection_args=HIPPO_CONNECTION

)

引发

ValueError – 如果未安装 hippo-api python 包。

参数
  • embedding_function (Embeddings) –

  • table_name (str) –

  • database_name (str) –

  • number_of_shards (int) –

  • number_of_replicas (int) –

  • connection_args (Optional[Dict[str, Any]]) –

  • index_params (Optional[dict]) –

  • drop_old (Optional[bool]) –

属性

embeddings

访问查询嵌入对象(如果可用)。

方法

__init__(embedding_function[, table_name, ...])

aadd_documents(documents, **kwargs)

异步运行更多文档通过嵌入并添加到向量存储。

aadd_texts(texts[, metadatas])

异步运行更多文本通过嵌入并添加到向量存储。

add_documents(documents, **kwargs)

在向量存储中添加或更新文档。

add_texts(texts[, metadatas, timeout, ...])

将文本添加到集合。

adelete([ids])

异步通过向量 ID 或其他条件删除。

afrom_documents(documents, embedding, **kwargs)

异步返回从文档和嵌入初始化的 VectorStore。

afrom_texts(texts, embedding[, metadatas])

异步返回从文本和嵌入初始化的 VectorStore。

aget_by_ids(ids, /)

异步通过 ID 获取文档。

amax_marginal_relevance_search(query[, k, ...])

异步返回使用最大边际相关性选择的文档。

amax_marginal_relevance_search_by_vector(...)

异步返回使用最大边际相关性选择的文档。

as_retriever(**kwargs)

返回从此 VectorStore 初始化的 VectorStoreRetriever。

asearch(query, search_type, **kwargs)

异步返回使用指定搜索类型与查询最相似的文档。

asimilarity_search(query[, k])

异步返回与查询最相似的文档。

asimilarity_search_by_vector(embedding[, k])

异步返回与嵌入向量最相似的文档。

asimilarity_search_with_relevance_scores(query)

异步返回范围在 [0, 1] 内的文档和相关性得分。

asimilarity_search_with_score(*args, **kwargs)

异步运行带距离的相似性搜索。

astreaming_upsert(items, /, batch_size, **kwargs)

aupsert(items, /, **kwargs)

delete([ids])

通过向量 ID 或其他条件删除。

from_documents(documents, embedding, **kwargs)

返回从文档和嵌入初始化的 VectorStore。

from_texts(texts, embedding[, metadatas, ...])

从给定的文本创建 VST 类的实例。

get_by_ids(ids, /)

通过 ID 获取文档。

max_marginal_relevance_search(query[, k, ...])

返回使用最大边际相关性选择的文档。

max_marginal_relevance_search_by_vector(...)

返回使用最大边际相关性选择的文档。

search(query, search_type, **kwargs)

返回使用指定搜索类型与查询最相似的文档。

similarity_search(query[, k, param, expr, ...])

对查询字符串执行相似性搜索。

similarity_search_by_vector(embedding[, k])

返回与嵌入向量最相似的文档。

similarity_search_with_relevance_scores(query)

返回范围在 [0, 1] 内的文档和相关性得分。

similarity_search_with_score(query[, k, ...])

对查询字符串执行搜索,并返回带有得分的结果。

similarity_search_with_score_by_vector(embedding)

对查询字符串执行搜索,并返回带有得分的结果。

streaming_upsert(items, /, batch_size, **kwargs)

upsert(items, /, **kwargs)

__init__(embedding_function: Embeddings, table_name: str = 'test', database_name: str = 'default', number_of_shards: int = 1, number_of_replicas: int = 1, connection_args: Optional[Dict[str, Any]] = None, index_params: Optional[dict] = None, drop_old: Optional[bool] = False)[source]
参数
  • embedding_function (Embeddings) –

  • table_name (str) –

  • database_name (str) –

  • number_of_shards (int) –

  • number_of_replicas (int) –

  • connection_args (Optional[Dict[str, Any]]) –

  • index_params (Optional[dict]) –

  • drop_old (Optional[bool]) –

async aadd_documents(documents: List[Document], **kwargs: Any) List[str]

异步运行更多文档通过嵌入并添加到向量存储。

参数
  • documents (List[Document]) – 要添加到向量存储的文档。

  • kwargs (Any) – 附加的关键字参数。

返回

添加的文本的 ID 列表。

引发

ValueError – 如果 ID 的数量与文档的数量不匹配。

返回类型

List[str]

async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str]

异步运行更多文本通过嵌入并添加到向量存储。

参数
  • texts (Iterable[str]) – 要添加到向量存储的字符串的可迭代对象。

  • metadatas (Optional[List[dict]]) – 与文本关联的可选元数据列表。默认为 None。

  • **kwargs (Any) – 向量存储特定的参数。

返回

从将文本添加到向量存储中获得的 id 列表。

引发
  • ValueError – 如果元数据的数量与文本的数量不匹配。

  • ValueError – 如果 id 的数量与文本的数量不匹配。

返回类型

List[str]

add_documents(documents: List[Document], **kwargs: Any) List[str]

在向量存储中添加或更新文档。

参数
  • documents (List[Document]) – 要添加到向量存储的文档。

  • kwargs (Any) – 附加的关键字参数。如果 kwargs 包含 ids 并且 documents 包含 ids,则 kwargs 中的 ids 将优先。

返回

添加的文本的 ID 列表。

引发

ValueError – 如果 id 的数量与文档的数量不匹配。

返回类型

List[str]

add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, timeout: Optional[int] = None, batch_size: int = 1000, **kwargs: Any) List[str][source]

将文本添加到集合。

参数
  • texts (Iterable[str]) – 包含要添加的文本的可迭代对象。

  • metadatas (Optional[List[dict]]) – 字典的可选列表,

  • text. (each dictionary contains the metadata associated with a) –

  • timeout (Optional[int]) – 可选超时时间,以秒为单位。

  • batch_size (int) – 每个批次插入的文本数量,默认为 1000。

  • **kwargs (Any) – 其他可选参数。

返回

一个字符串列表,包含插入文本的唯一标识符。

返回类型

List[str]

注意

如果集合尚未创建,则此方法将创建一个新集合。

async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool]

异步通过向量 ID 或其他条件删除。

参数
  • ids (Optional[List[str]]) – 要删除的id列表。如果为None,则删除全部。默认为None。

  • **kwargs (Any) – 子类可能使用的其他关键字参数。

返回

如果删除成功,则为True,否则为False;如果未实现,则为None。

返回类型

Optional[bool]

async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST

异步返回从文档和嵌入初始化的 VectorStore。

参数
  • documents (List[Document]) – 要添加到向量存储的文档列表。

  • embedding (Embeddings) – 要使用的嵌入函数。

  • kwargs (Any) – 附加的关键字参数。

返回

从文档和嵌入初始化的向量存储。

返回类型

VectorStore

async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST

异步返回从文本和嵌入初始化的 VectorStore。

参数
  • texts (List[str]) – 要添加到向量存储的文本列表。

  • embedding (Embeddings) – 要使用的嵌入函数。

  • metadatas (Optional[List[dict]]) – 与文本关联的可选元数据列表。默认为 None。

  • kwargs (Any) – 附加的关键字参数。

返回

从文本和嵌入初始化的向量存储。

返回类型

VectorStore

async aget_by_ids(ids: Sequence[str], /) List[Document]

异步通过 ID 获取文档。

返回的文档应将ID字段设置为向量存储中文档的ID。

如果某些ID未找到或存在重复ID,则返回的文档可能少于请求的文档。

用户不应假定返回文档的顺序与输入ID的顺序匹配。相反,用户应依赖返回文档的ID字段。

如果某些ID未找到文档,则此方法**不应**引发异常。

参数

ids (Sequence[str]) – 要检索的id列表。

返回

文档列表。

返回类型

List[Document]

0.2.11 版本新增。

异步返回使用最大边际相关性选择的文档。

最大边际相关性优化了与查询的相似性以及所选文档之间的多样性。

参数
  • query (str) – 用于查找相似文档的文本。

  • k (int) – 要返回的文档数量。默认为 4。

  • fetch_k (int) – 要获取并传递给 MMR 算法的文档数量。默认为 20。

  • lambda_mult (float) – 介于 0 和 1 之间的数字,用于确定结果之间多样性的程度,其中 0 对应于最大多样性,1 对应于最小多样性。默认为 0.5。

  • kwargs (Any) –

返回

通过最大边际相关性选择的文档列表。

返回类型

List[Document]

async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document]

异步返回使用最大边际相关性选择的文档。

最大边际相关性优化了与查询的相似性以及所选文档之间的多样性。

参数
  • embedding (List[float]) – 用于查找相似文档的嵌入向量。

  • k (int) – 要返回的文档数量。默认为 4。

  • fetch_k (int) – 要获取并传递给 MMR 算法的文档数量。默认为 20。

  • lambda_mult (float) – 介于 0 和 1 之间的数字,用于确定结果之间多样性的程度,其中 0 对应于最大多样性,1 对应于最小多样性。默认为 0.5。

  • **kwargs (Any) – 传递给搜索方法的参数。

返回

通过最大边际相关性选择的文档列表。

返回类型

List[Document]

as_retriever(**kwargs: Any) VectorStoreRetriever

返回从此 VectorStore 初始化的 VectorStoreRetriever。

参数

**kwargs (Any) –

传递给搜索函数的关键字参数。可以包括:search_type (Optional[str]):定义检索器应执行的搜索类型。可以是“similarity”(默认)、“mmr”或“similarity_score_threshold”。

检索器应执行的搜索类型。可以是“similarity”(默认)、“mmr”或“similarity_score_threshold”。

search_kwargs (Optional[Dict]):传递给搜索函数的关键字参数。可以包括如下内容
搜索函数。可以包括如下内容:

k:要返回的文档数量(默认值:4)score_threshold:相似度分数阈值的最小相关性阈值

用于相似度分数阈值

fetch_k:传递给 MMR 算法的文档数量

(默认值:20)

lambda_mult:MMR 返回结果的多样性;

1 表示最小多样性,0 表示最大多样性。(默认值:0.5)

filter:按文档元数据过滤

返回

VectorStore 的检索器类。

返回类型

VectorStoreRetriever

示例

# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 6, 'lambda_mult': 0.25}
)

# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 5, 'fetch_k': 50}
)

# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
    search_type="similarity_score_threshold",
    search_kwargs={'score_threshold': 0.8}
)

# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={'k': 1})

# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
    search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}}
)
async asearch(query: str, search_type: str, **kwargs: Any) List[Document]

异步返回使用指定搜索类型与查询最相似的文档。

参数
  • query (str) – 输入文本。

  • search_type (str) – 要执行的搜索类型。可以是“similarity”、“mmr”或“similarity_score_threshold”。

  • **kwargs (Any) – 传递给搜索方法的参数。

返回

与查询最相似的文档列表。

引发

ValueError – 如果 search_type 不是 “similarity”、“mmr” 或 “similarity_score_threshold” 之一,则会引发 ValueError。

返回类型

List[Document]

异步返回与查询最相似的文档。

参数
  • query (str) – 输入文本。

  • k (int) – 要返回的文档数量。默认为 4。

  • **kwargs (Any) – 传递给搜索方法的参数。

返回

与查询最相似的文档列表。

返回类型

List[Document]

async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document]

异步返回与嵌入向量最相似的文档。

参数
  • embedding (List[float]) – 用于查找相似文档的嵌入向量。

  • k (int) – 要返回的文档数量。默认为 4。

  • **kwargs (Any) – 传递给搜索方法的参数。

返回

与查询向量最相似的文档列表。

返回类型

List[Document]

async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]]

异步返回范围在 [0, 1] 内的文档和相关性得分。

0 表示不相似,1 表示最相似。

参数
  • query (str) – 输入文本。

  • k (int) – 要返回的文档数量。默认为 4。

  • **kwargs (Any) –

    要传递给相似度搜索的 kwargs。应包括:score_threshold:可选,介于 0 到 1 之间的浮点值,用于

    过滤检索到的文档结果集

返回

(文档,相似度分数) 元组的列表

返回类型

List[Tuple[Document, float]]

async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]]

异步运行带距离的相似性搜索。

参数
  • *args (Any) – 传递给搜索方法的参数。

  • **kwargs (Any) – 传递给搜索方法的参数。

返回

(文档,相似度分数) 元组的列表。

返回类型

List[Tuple[Document, float]]

astreaming_upsert(items: AsyncIterable[Document], /, batch_size: int, **kwargs: Any) AsyncIterator[UpsertResponse]

Beta

0.2.11 版本新增。API 可能会发生变化。

以流式方式更新文档。streaming_upsert 的异步版本。

参数
  • items (AsyncIterable[Document]) – 要添加到向量存储的文档的可迭代对象。

  • batch_size (int) – 每次更新批处理的大小。

  • kwargs (Any) – 附加关键字参数。kwargs 应仅包含所有文档通用的参数。(例如,索引超时、重试策略等)kwargs 不应包含 id 以避免语义模糊。相反,ID 应作为 Document 对象的一部分提供。

Yields

UpsertResponse – 响应对象,其中包含向量存储中成功添加或更新的 ID 列表以及未能添加或更新的 ID 列表。

返回类型

AsyncIterator[UpsertResponse]

0.2.11 版本新增。

async aupsert(items: Sequence[Document], /, **kwargs: Any) UpsertResponse

Beta

0.2.11 版本新增。API 可能会发生变化。

在向量存储中添加或更新文档。upsert 的异步版本。

如果提供了 Document 对象的 ID 字段,则更新功能应使用该字段。如果未提供 ID,则更新方法可以自由地为文档生成 ID。

当指定 ID 且文档已存在于向量存储中时,更新方法应使用新数据更新文档。如果文档不存在,则更新方法应将文档添加到向量存储中。

参数
  • items (Sequence[Document]) – 要添加到向量存储的文档序列。

  • kwargs (Any) – 附加的关键字参数。

返回

一个响应对象,其中包含向量存储中成功添加或更新的 ID 列表以及未能添加或更新的 ID 列表。

返回类型

UpsertResponse

0.2.11 版本新增。

delete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool]

通过向量 ID 或其他条件删除。

参数
  • ids (Optional[List[str]]) – 要删除的id列表。如果为None,则删除全部。默认为None。

  • **kwargs (Any) – 子类可能使用的其他关键字参数。

返回

如果删除成功,则为True,否则为False;如果未实现,则为None。

返回类型

Optional[bool]

classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST

返回从文档和嵌入初始化的 VectorStore。

参数
  • documents (List[Document]) – 要添加到向量存储的文档列表。

  • embedding (Embeddings) – 要使用的嵌入函数。

  • kwargs (Any) – 附加的关键字参数。

返回

从文档和嵌入初始化的向量存储。

返回类型

VectorStore

classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, table_name: str = 'test', database_name: str = 'default', connection_args: Dict[str, Any] = {'host': 'localhost', 'password': 'admin', 'port': '7788', 'username': 'admin'}, index_params: Optional[Dict[Any, Any]] = None, search_params: Optional[Dict[str, Any]] = None, drop_old: bool = False, **kwargs: Any) Hippo[source]

从给定的文本创建 VST 类的实例。

参数
  • texts (List[str]) – 要添加的文本列表。

  • embedding (Embeddings) – 文本的嵌入模型。

  • metadatas (List[dict], optional) –

  • None. (List of metadata dictionaries for each text.Defaults to) –

  • table_name (str) – 表名。默认为 “test”。

  • database_name (str) – 数据库名。默认为 “default”。

  • connection_args (dict[str, Any]) – 连接参数。

  • DEFAULT_HIPPO_CONNECTION. (Defaults to) –

  • index_params (dict) – 索引参数。默认为 None。

  • search_params (dict) – 搜索参数。默认为空字典。

  • drop_old (bool) – 是否删除旧集合。默认为 False。

  • kwargs (Any) – 其他参数。

返回

VST 类的实例。

返回类型

Hippo

get_by_ids(ids: Sequence[str], /) List[Document]

通过 ID 获取文档。

返回的文档应将ID字段设置为向量存储中文档的ID。

如果某些ID未找到或存在重复ID,则返回的文档可能少于请求的文档。

用户不应假定返回文档的顺序与输入ID的顺序匹配。相反,用户应依赖返回文档的ID字段。

如果某些ID未找到文档,则此方法**不应**引发异常。

参数

ids (Sequence[str]) – 要检索的id列表。

返回

文档列表。

返回类型

List[Document]

0.2.11 版本新增。

返回使用最大边际相关性选择的文档。

最大边际相关性优化了与查询的相似性以及所选文档之间的多样性。

参数
  • query (str) – 用于查找相似文档的文本。

  • k (int) – 要返回的文档数量。默认为 4。

  • fetch_k (int) – 要获取并传递给 MMR 算法的文档数量。默认为 20。

  • lambda_mult (float) – 介于 0 和 1 之间的数字,用于确定结果之间多样性的程度,其中 0 对应于最大多样性,1 对应于最小多样性。默认为 0.5。

  • **kwargs (Any) – 传递给搜索方法的参数。

返回

通过最大边际相关性选择的文档列表。

返回类型

List[Document]

max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document]

返回使用最大边际相关性选择的文档。

最大边际相关性优化了与查询的相似性以及所选文档之间的多样性。

参数
  • embedding (List[float]) – 用于查找相似文档的嵌入向量。

  • k (int) – 要返回的文档数量。默认为 4。

  • fetch_k (int) – 要获取并传递给 MMR 算法的文档数量。默认为 20。

  • lambda_mult (float) – 介于 0 和 1 之间的数字,用于确定结果之间多样性的程度,其中 0 对应于最大多样性,1 对应于最小多样性。默认为 0.5。

  • **kwargs (Any) – 传递给搜索方法的参数。

返回

通过最大边际相关性选择的文档列表。

返回类型

List[Document]

search(query: str, search_type: str, **kwargs: Any) List[Document]

返回使用指定搜索类型与查询最相似的文档。

参数
  • query (str) – 输入文本

  • search_type (str) – 要执行的搜索类型。可以是“similarity”、“mmr”或“similarity_score_threshold”。

  • **kwargs (Any) – 传递给搜索方法的参数。

返回

与查询最相似的文档列表。

引发

ValueError – 如果 search_type 不是 “similarity”、“mmr” 或 “similarity_score_threshold” 之一,则会引发 ValueError。

返回类型

List[Document]

对查询字符串执行相似性搜索。

参数
  • query (str) – 要搜索的文本。

  • k (int, optional) – 返回的结果数量。默认为 4。

  • param (dict, optional) – 指定索引的搜索参数。

  • None. (Defaults to) –

  • expr (str, optional) – 过滤表达式。默认为 None。

  • timeout (int, optional) – 超时错误前的等待时间。

  • None.

  • kwargs (Any) – Collection.search() 的关键字参数。

返回

搜索的文档结果。

返回类型

List[Document]

similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document]

返回与嵌入向量最相似的文档。

参数
  • embedding (List[float]) – 用于查找相似文档的嵌入向量。

  • k (int) – 要返回的文档数量。默认为 4。

  • **kwargs (Any) – 传递给搜索方法的参数。

返回

与查询向量最相似的文档列表。

返回类型

List[Document]

similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]]

返回范围在 [0, 1] 内的文档和相关性得分。

0 表示不相似,1 表示最相似。

参数
  • query (str) – 输入文本。

  • k (int) – 要返回的文档数量。默认为 4。

  • **kwargs (Any) –

    要传递给相似度搜索的 kwargs。应包括:score_threshold:可选,介于 0 到 1 之间的浮点值,用于

    过滤检索到的文档结果集。

返回

(文档,相似度分数) 元组的列表。

返回类型

List[Tuple[Document, float]]

similarity_search_with_score(query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) List[Tuple[Document, float]][source]

对查询字符串执行搜索,并返回带有得分的结果。

参数
  • query (str) – 要搜索的文本。

  • k (int, optional) – 返回的结果数量。

  • 4. (Default is) –

  • param (dict) – 指定索引的搜索参数。

  • None. (Default is) –

  • expr (str, optional) – 过滤表达式。默认为 None。

  • timeout (int, optional) – 超时错误前的等待时间。

  • None.

  • kwargs (Any) – Collection.search() 的关键字参数。

返回类型

List[float], List[Tuple[Document, any, any]]

similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) List[Tuple[Document, float]][source]

对查询字符串执行搜索,并返回带有得分的结果。

参数
  • embedding (List[float]) – 正在搜索的嵌入向量。

  • k (int, optional) – 返回的结果数量。

  • 4. (Default is) –

  • param (dict) – 指定索引的搜索参数。

  • None. (Default is) –

  • expr (str, optional) – 过滤表达式。默认为 None。

  • timeout (int, optional) – 超时错误前的等待时间。

  • None.

  • kwargs (Any) – Collection.search() 的关键字参数。

返回

返回文档和分数。

返回类型

List[Tuple[Document, float]]

streaming_upsert(items: Iterable[Document], /, batch_size: int, **kwargs: Any) Iterator[UpsertResponse]

Beta

0.2.11 版本新增。API 可能会发生变化。

以流式方式更新文档。

参数
  • items (Iterable[Document]) – 要添加到向量存储的可迭代文档。

  • batch_size (int) – 每次更新批处理的大小。

  • kwargs (Any) – 额外的关键字参数。kwargs 应该只包含所有文档共有的参数。(例如,索引的超时时间、重试策略等)kwargs 不应包含 ids 以避免语义模糊。相反,ID 应该作为 Document 对象的一部分提供。

Yields

UpsertResponse – 响应对象,其中包含向量存储中成功添加或更新的 ID 列表以及未能添加或更新的 ID 列表。

返回类型

Iterator[UpsertResponse]

0.2.11 版本新增。

upsert(items: Sequence[Document], /, **kwargs: Any) UpsertResponse

Beta

0.2.11 版本新增。API 可能会发生变化。

在向量存储中添加或更新文档。

如果提供了 Document 对象的 ID 字段,则更新功能应使用该字段。如果未提供 ID,则更新方法可以自由地为文档生成 ID。

当指定 ID 且文档已存在于向量存储中时,更新方法应使用新数据更新文档。如果文档不存在,则更新方法应将文档添加到向量存储中。

参数
  • items (Sequence[Document]) – 要添加到向量存储的文档序列。

  • kwargs (Any) – 附加的关键字参数。

返回

一个响应对象,其中包含向量存储中成功添加或更新的 ID 列表以及未能添加或更新的 ID 列表。

返回类型

UpsertResponse

0.2.11 版本新增。

Hippo 的使用示例