langchain_community.vectorstores.couchbase.CouchbaseVectorStore¶

class langchain_community.vectorstores.couchbase.CouchbaseVectorStore(cluster: Cluster, bucket_name: str, scope_name: str, collection_name: str, embedding: Embeddings, index_name: str, *, text_key: Optional[str] = 'text', embedding_key: Optional[str] = 'embedding', scoped_index: bool = True)[source]¶

Deprecated since version 0.2.4: Use langchain_couchbase.CouchbaseVectorStore instead.

Couchbase Vector Store vector store.

To use it, you need - a recent installation of the couchbase library - a Couchbase database with a pre-defined Search index with support for

vector fields

Example

from langchain_community.vectorstores import CouchbaseVectorStore
from langchain_openai import OpenAIEmbeddings

from couchbase.cluster import Cluster
from couchbase.auth import PasswordAuthenticator
from couchbase.options import ClusterOptions
from datetime import timedelta

auth = PasswordAuthenticator(username, password)
options = ClusterOptions(auth)
connect_string = "couchbases://127.0.0.1"
cluster = Cluster(connect_string, options)

# Wait until the cluster is ready for use.
cluster.wait_until_ready(timedelta(seconds=5))

embeddings = OpenAIEmbeddings()

vectorstore = CouchbaseVectorStore(
    cluster=cluster,
    bucket_name="",
    scope_name="",
    collection_name="",
    embedding=embeddings,
    index_name="vector-index",
)

vectorstore.add_texts(["hello", "world"])
results = vectorstore.similarity_search("ola", k=1)

Initialize the Couchbase Vector Store.

Parameters
  • cluster (Cluster) – couchbase cluster object with active connection.

  • bucket_name (str) – name of bucket to store documents in.

  • scope_name (str) – name of scope in the bucket to store documents in.

  • collection_name (str) – name of collection in the scope to store documents in

  • embedding (Embeddings) – embedding function to use.

  • index_name (str) – name of the Search index to use.

  • text_key (optional[str]) – key in document to use as text. Set to text by default.

  • embedding_key (optional[str]) – key in document to use for the embeddings. Set to embedding by default.

  • scoped_index (optional[bool]) – specify whether the index is a scoped index. Set to True by default.

Attributes

DEFAULT_BATCH_SIZE

embeddings

Return the query embedding object.

Methods

__init__(cluster, bucket_name, scope_name, ...)

Initialize the Couchbase Vector Store.

aadd_documents(documents, **kwargs)

Async run more documents through the embeddings and add to the vectorstore.

aadd_texts(texts[, metadatas])

Async run more texts through the embeddings and add to the vectorstore.

add_documents(documents, **kwargs)

Add or update documents in the vectorstore.

add_texts(texts[, metadatas, ids, batch_size])

Run texts through the embeddings and persist in vectorstore.

adelete([ids])

Async delete by vector ID or other criteria.

afrom_documents(documents, embedding, **kwargs)

Async return VectorStore initialized from documents and embeddings.

afrom_texts(texts, embedding[, metadatas])

Async return VectorStore initialized from texts and embeddings.

aget_by_ids(ids, /)

Async get documents by their IDs.

amax_marginal_relevance_search(query[, k, ...])

Async return docs selected using the maximal marginal relevance.

amax_marginal_relevance_search_by_vector(...)

Async return docs selected using the maximal marginal relevance.

as_retriever(**kwargs)

Return VectorStoreRetriever initialized from this VectorStore.

asearch(query, search_type, **kwargs)

Async return docs most similar to query using a specified search type.

asimilarity_search(query[, k])

Async return docs most similar to query.

asimilarity_search_by_vector(embedding[, k])

Async return docs most similar to embedding vector.

asimilarity_search_with_relevance_scores(query)

Async return docs and relevance scores in the range [0, 1].

asimilarity_search_with_score(*args, **kwargs)

Async run similarity search with distance.

astreaming_upsert(items, /, batch_size, **kwargs)

aupsert(items, /, **kwargs)

delete([ids])

Delete documents from the vector store by ids.

from_documents(documents, embedding, **kwargs)

Return VectorStore initialized from documents and embeddings.

from_texts(texts, embedding[, metadatas])

Construct a Couchbase vector store from a list of texts.

get_by_ids(ids, /)

Get documents by their IDs.

max_marginal_relevance_search(query[, k, ...])

Return docs selected using the maximal marginal relevance.

max_marginal_relevance_search_by_vector(...)

Return docs selected using the maximal marginal relevance.

search(query, search_type, **kwargs)

Return docs most similar to query using a specified search type.

similarity_search(query[, k, search_options])

Return documents most similar to embedding vector with their scores.

similarity_search_by_vector(embedding[, k, ...])

Return documents that are most similar to the vector embedding.

similarity_search_with_relevance_scores(query)

Return docs and relevance scores in the range [0, 1].

similarity_search_with_score(query[, k, ...])

Return documents that are most similar to the query with their scores.

similarity_search_with_score_by_vector(embedding)

Return docs most similar to embedding vector with their scores.

streaming_upsert(items, /, batch_size, **kwargs)

upsert(items, /, **kwargs)

__init__(cluster: Cluster, bucket_name: str, scope_name: str, collection_name: str, embedding: Embeddings, index_name: str, *, text_key: Optional[str] = 'text', embedding_key: Optional[str] = 'embedding', scoped_index: bool = True) None[source]¶

Initialize the Couchbase Vector Store.

Parameters
  • cluster (Cluster) – couchbase cluster object with active connection.

  • bucket_name (str) – name of bucket to store documents in.

  • scope_name (str) – name of scope in the bucket to store documents in.

  • collection_name (str) – name of collection in the scope to store documents in

  • embedding (Embeddings) – embedding function to use.

  • index_name (str) – name of the Search index to use.

  • text_key (optional[str]) – key in document to use as text. Set to text by default.

  • embedding_key (optional[str]) – key in document to use for the embeddings. Set to embedding by default.

  • scoped_index (optional[bool]) – specify whether the index is a scoped index. Set to True by default.

Return type

None

async aadd_documents(documents: List[Document], **kwargs: Any) List[str]¶

Async run more documents through the embeddings and add to the vectorstore.

Parameters
  • documents (List[Document]) – Documents to add to the vectorstore.

  • kwargs (Any) – Additional keyword arguments.

Returns

List of IDs of the added texts.

Raises

ValueError – If the number of IDs does not match the number of documents.

Return type

List[str]

async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str]¶

Async run more texts through the embeddings and add to the vectorstore.

Parameters
  • texts (Iterable[str]) – Iterable of strings to add to the vectorstore.

  • metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts. Default is None.

  • **kwargs (Any) – vectorstore specific parameters.

Returns

List of ids from adding the texts into the vectorstore.

Raises
  • ValueError – If the number of metadatas does not match the number of texts.

  • ValueError – If the number of ids does not match the number of texts.

Return type

List[str]

add_documents(documents: List[Document], **kwargs: Any) List[str]¶

Add or update documents in the vectorstore.

Parameters
  • documents (List[Document]) – Documents to add to the vectorstore.

  • kwargs (Any) – Additional keyword arguments. if kwargs contains ids and documents contain ids, the ids in the kwargs will receive precedence.

Returns

List of IDs of the added texts.

Raises

ValueError – If the number of ids does not match the number of documents.

Return type

List[str]

add_texts(texts: Iterable[str], metadatas: Optional[List[Dict[str, Any]]] = None, ids: Optional[List[str]] = None, batch_size: Optional[int] = None, **kwargs: Any) List[str][source]¶

Run texts through the embeddings and persist in vectorstore.

If the document IDs are passed, the existing documents (if any) will be overwritten with the new ones.

Parameters
  • texts (Iterable[str]) – Iterable of strings to add to the vectorstore.

  • metadatas (Optional[List[Dict]]) – Optional list of metadatas associated with the texts.

  • ids (Optional[List[str]]) – Optional list of ids associated with the texts. IDs have to be unique strings across the collection. If it is not specified uuids are generated and used as ids.

  • batch_size (Optional[int]) – Optional batch size for bulk insertions. Default is 100.

  • kwargs (Any) –

Returns

List of ids from adding the texts into the vectorstore.

Return type

List[str]

async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool]¶

Async delete by vector ID or other criteria.

Parameters
  • ids (Optional[List[str]]) – List of ids to delete. If None, delete all. Default is None.

  • **kwargs (Any) – Other keyword arguments that subclasses might use.

Returns

True if deletion is successful, False otherwise, None if not implemented.

Return type

Optional[bool]

async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST¶

Async return VectorStore initialized from documents and embeddings.

Parameters
  • documents (List[Document]) – List of Documents to add to the vectorstore.

  • embedding (Embeddings) – Embedding function to use.

  • kwargs (Any) – Additional keyword arguments.

Returns

VectorStore initialized from documents and embeddings.

Return type

VectorStore

async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST¶

Async return VectorStore initialized from texts and embeddings.

Parameters
  • texts (List[str]) – Texts to add to the vectorstore.

  • embedding (Embeddings) – Embedding function to use.

  • metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts. Default is None.

  • kwargs (Any) – Additional keyword arguments.

Returns

VectorStore initialized from texts and embeddings.

Return type

VectorStore

async aget_by_ids(ids: Sequence[str], /) List[Document]¶

Async get documents by their IDs.

The returned documents are expected to have the ID field set to the ID of the document in the vector store.

Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.

Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.

This method should NOT raise exceptions if no documents are found for some IDs.

Parameters

ids (Sequence[str]) – List of ids to retrieve.

Returns

List of Documents.

Return type

List[Document]

New in version 0.2.11.

Async return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters
  • query (str) – Text to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • kwargs (Any) –

Returns

List of Documents selected by maximal marginal relevance.

Return type

List[Document]

async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document]¶

Async return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents selected by maximal marginal relevance.

Return type

List[Document]

as_retriever(**kwargs: Any) VectorStoreRetriever¶

Return VectorStoreRetriever initialized from this VectorStore.

Parameters

**kwargs (Any) –

Keyword arguments to pass to the search function. Can include: search_type (Optional[str]): Defines the type of search that

the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.

search_kwargs (Optional[Dict]): Keyword arguments to pass to the
search function. Can include things like:

k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold

for similarity_score_threshold

fetch_k: Amount of documents to pass to MMR algorithm

(Default: 20)

lambda_mult: Diversity of results returned by MMR;

1 for minimum diversity and 0 for maximum. (Default: 0.5)

filter: Filter by document metadata

Returns

Retriever class for VectorStore.

Return type

VectorStoreRetriever

Examples:

# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 6, 'lambda_mult': 0.25}
)

# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(
    search_type="mmr",
    search_kwargs={'k': 5, 'fetch_k': 50}
)

# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
    search_type="similarity_score_threshold",
    search_kwargs={'score_threshold': 0.8}
)

# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={'k': 1})

# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
    search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}}
)
async asearch(query: str, search_type: str, **kwargs: Any) List[Document]¶

Async return docs most similar to query using a specified search type.

Parameters
  • query (str) – Input text.

  • search_type (str) – Type of search to perform. Can be “similarity”, “mmr”, or “similarity_score_threshold”.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents most similar to the query.

Raises

ValueError – If search_type is not one of “similarity”, “mmr”, or “similarity_score_threshold”.

Return type

List[Document]

Async return docs most similar to query.

Parameters
  • query (str) – Input text.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents most similar to the query.

Return type

List[Document]

async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document]¶

Async return docs most similar to embedding vector.

Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents most similar to the query vector.

Return type

List[Document]

async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]]¶

Async return docs and relevance scores in the range [0, 1].

0 is dissimilar, 1 is most similar.

Parameters
  • query (str) – Input text.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) –

    kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to

    filter the resulting set of retrieved docs

Returns

List of Tuples of (doc, similarity_score)

Return type

List[Tuple[Document, float]]

async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]]¶

Async run similarity search with distance.

Parameters
  • *args (Any) – Arguments to pass to the search method.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Tuples of (doc, similarity_score).

Return type

List[Tuple[Document, float]]

astreaming_upsert(items: AsyncIterable[Document], /, batch_size: int, **kwargs: Any) AsyncIterator[UpsertResponse]¶

Beta

Added in 0.2.11. The API is subject to change.

Upsert documents in a streaming fashion. Async version of streaming_upsert.

Parameters
  • items (AsyncIterable[Document]) – Iterable of Documents to add to the vectorstore.

  • batch_size (int) – The size of each batch to upsert.

  • kwargs (Any) – Additional keyword arguments. kwargs should only include parameters that are common to all documents. (e.g., timeout for indexing, retry policy, etc.) kwargs should not include ids to avoid ambiguous semantics. Instead the ID should be provided as part of the Document object.

Yields

UpsertResponse – A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.

Return type

AsyncIterator[UpsertResponse]

New in version 0.2.11.

async aupsert(items: Sequence[Document], /, **kwargs: Any) UpsertResponse¶

Beta

Added in 0.2.11. The API is subject to change.

Add or update documents in the vectorstore. Async version of upsert.

The upsert functionality should utilize the ID field of the Document object if it is provided. If the ID is not provided, the upsert method is free to generate an ID for the document.

When an ID is specified and the document already exists in the vectorstore, the upsert method should update the document with the new data. If the document does not exist, the upsert method should add the document to the vectorstore.

Parameters
  • items (Sequence[Document]) – Sequence of Documents to add to the vectorstore.

  • kwargs (Any) – Additional keyword arguments.

Returns

A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.

Return type

UpsertResponse

New in version 0.2.11.

delete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool][source]¶

Delete documents from the vector store by ids.

Parameters
  • ids (List[str]) – List of IDs of the documents to delete.

  • batch_size (Optional[int]) – Optional batch size for bulk deletions.

  • kwargs (Any) –

Returns

True if all the documents were deleted successfully, False otherwise.

Return type

bool

classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST¶

Return VectorStore initialized from documents and embeddings.

Parameters
  • documents (List[Document]) – List of Documents to add to the vectorstore.

  • embedding (Embeddings) – Embedding function to use.

  • kwargs (Any) – Additional keyword arguments.

Returns

VectorStore initialized from documents and embeddings.

Return type

VectorStore

classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[Dict[Any, Any]]] = None, **kwargs: Any) CouchbaseVectorStore[source]¶

Construct a Couchbase vector store from a list of texts.

Example


from langchain_community.vectorstores import CouchbaseVectorStore from langchain_openai import OpenAIEmbeddings

from couchbase.cluster import Cluster from couchbase.auth import PasswordAuthenticator from couchbase.options import ClusterOptions from datetime import timedelta

auth = PasswordAuthenticator(username, password) options = ClusterOptions(auth) connect_string = “couchbases://127.0.0.1” cluster = Cluster(connect_string, options)

# Wait until the cluster is ready for use. cluster.wait_until_ready(timedelta(seconds=5))

embeddings = OpenAIEmbeddings()

texts = [“hello”, “world”]

vectorstore = CouchbaseVectorStore.from_texts(

texts, embedding=embeddings, cluster=cluster, bucket_name=””, scope_name=””, collection_name=””, index_name=”vector-index”,

)

Parameters
  • texts (List[str]) – list of texts to add to the vector store.

  • embedding (Embeddings) – embedding function to use.

  • metadatas (optional[List[Dict]) – list of metadatas to add to documents.

  • **kwargs – Keyword arguments used to initialize the vector store with and/or passed to add_texts method. Check the constructor and/or add_texts for the list of accepted arguments.

Returns

A Couchbase vector store.

Return type

CouchbaseVectorStore

get_by_ids(ids: Sequence[str], /) List[Document]¶

Get documents by their IDs.

The returned documents are expected to have the ID field set to the ID of the document in the vector store.

Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.

Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.

This method should NOT raise exceptions if no documents are found for some IDs.

Parameters

ids (Sequence[str]) – List of ids to retrieve.

Returns

List of Documents.

Return type

List[Document]

New in version 0.2.11.

Return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters
  • query (str) – Text to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents selected by maximal marginal relevance.

Return type

List[Document]

max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document]¶

Return docs selected using the maximal marginal relevance.

Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents selected by maximal marginal relevance.

Return type

List[Document]

search(query: str, search_type: str, **kwargs: Any) List[Document]¶

Return docs most similar to query using a specified search type.

Parameters
  • query (str) – Input text

  • search_type (str) – Type of search to perform. Can be “similarity”, “mmr”, or “similarity_score_threshold”.

  • **kwargs (Any) – Arguments to pass to the search method.

Returns

List of Documents most similar to the query.

Raises

ValueError – If search_type is not one of “similarity”, “mmr”, or “similarity_score_threshold”.

Return type

List[Document]

Return documents most similar to embedding vector with their scores.

Parameters
  • query (str) – Query to look up for similar documents

  • k (int) – Number of Documents to return. Defaults to 4.

  • search_options (Optional[Dict[str, Any]]) – Optional search options that are passed to Couchbase search. Defaults to empty dictionary

  • fields (Optional[List[str]]) – Optional list of fields to include in the metadata of results. Note that these need to be stored in the index. If nothing is specified, defaults to all the fields stored in the index.

  • kwargs (Any) –

Returns

List of Documents most similar to the query.

Return type

List[Document]

similarity_search_by_vector(embedding: List[float], k: int = 4, search_options: Optional[Dict[str, Any]] = {}, **kwargs: Any) List[Document][source]¶

Return documents that are most similar to the vector embedding.

Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • search_options (Optional[Dict[str, Any]]) – Optional search options that are passed to Couchbase search. Defaults to empty dictionary.

  • fields (Optional[List[str]]) – Optional list of fields to include in the metadata of results. Note that these need to be stored in the index. If nothing is specified, defaults to document text and metadata fields.

  • kwargs (Any) –

Returns

List of Documents most similar to the query.

Return type

List[Document]

similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]]¶

Return docs and relevance scores in the range [0, 1].

0 is dissimilar, 1 is most similar.

Parameters
  • query (str) – Input text.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) –

    kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to

    filter the resulting set of retrieved docs.

Returns

List of Tuples of (doc, similarity_score).

Return type

List[Tuple[Document, float]]

similarity_search_with_score(query: str, k: int = 4, search_options: Optional[Dict[str, Any]] = {}, **kwargs: Any) List[Tuple[Document, float]][source]¶

Return documents that are most similar to the query with their scores.

Parameters
  • query (str) – Query to look up for similar documents

  • k (int) – Number of Documents to return. Defaults to 4.

  • search_options (Optional[Dict[str, Any]]) – Optional search options that are passed to Couchbase search. Defaults to empty dictionary.

  • fields (Optional[List[str]]) – Optional list of fields to include in the metadata of results. Note that these need to be stored in the index. If nothing is specified, defaults to text and metadata fields.

  • kwargs (Any) –

Returns

List of (Document, score) that are most similar to the query.

Return type

List[Tuple[Document, float]]

similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, search_options: Optional[Dict[str, Any]] = {}, **kwargs: Any) List[Tuple[Document, float]][source]¶

Return docs most similar to embedding vector with their scores.

Parameters
  • embedding (List[float]) – Embedding vector to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • search_options (Optional[Dict[str, Any]]) – Optional search options that are passed to Couchbase search. Defaults to empty dictionary.

  • fields (Optional[List[str]]) – Optional list of fields to include in the metadata of results. Note that these need to be stored in the index. If nothing is specified, defaults to all the fields stored in the index.

  • kwargs (Any) –

Returns

List of (Document, score) that are the most similar to the query vector.

Return type

List[Tuple[Document, float]]

streaming_upsert(items: Iterable[Document], /, batch_size: int, **kwargs: Any) Iterator[UpsertResponse]¶

Beta

Added in 0.2.11. The API is subject to change.

Upsert documents in a streaming fashion.

Parameters
  • items (Iterable[Document]) – Iterable of Documents to add to the vectorstore.

  • batch_size (int) – The size of each batch to upsert.

  • kwargs (Any) – Additional keyword arguments. kwargs should only include parameters that are common to all documents. (e.g., timeout for indexing, retry policy, etc.) kwargs should not include ids to avoid ambiguous semantics. Instead, the ID should be provided as part of the Document object.

Yields

UpsertResponse – A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.

Return type

Iterator[UpsertResponse]

New in version 0.2.11.

upsert(items: Sequence[Document], /, **kwargs: Any) UpsertResponse¶

Beta

Added in 0.2.11. The API is subject to change.

Add or update documents in the vectorstore.

The upsert functionality should utilize the ID field of the Document object if it is provided. If the ID is not provided, the upsert method is free to generate an ID for the document.

When an ID is specified and the document already exists in the vectorstore, the upsert method should update the document with the new data. If the document does not exist, the upsert method should add the document to the vectorstore.

Parameters
  • items (Sequence[Document]) – Sequence of Documents to add to the vectorstore.

  • kwargs (Any) – Additional keyword arguments.

Returns

A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.

Return type

UpsertResponse

New in version 0.2.11.

Examples using CouchbaseVectorStore¶