langchain_community.vectorstores.bigquery_vector_search
.BigQueryVectorSearch¶
- class langchain_community.vectorstores.bigquery_vector_search.BigQueryVectorSearch(embedding: Embeddings, project_id: str, dataset_name: str, table_name: str, location: str = 'US', content_field: str = 'content', metadata_field: str = 'metadata', text_embedding_field: str = 'text_embedding', doc_id_field: str = 'doc_id', distance_strategy: DistanceStrategy = DistanceStrategy.EUCLIDEAN_DISTANCE, credentials: Optional[Any] = None)[source]¶
Deprecated since version 0.0.33: Use
langchain_google_community.BigQueryVectorSearch
instead.Google Cloud BigQuery vector store.
- To use, you need the following packages installed:
google-cloud-bigquery
Constructor for BigQueryVectorSearch.
- Parameters
embedding (Embeddings) – Text Embedding model to use.
project_id (str) – GCP project.
dataset_name (str) – BigQuery dataset to store documents and embeddings.
table_name (str) – BigQuery table name.
location (str, optional) – BigQuery region. Defaults to `US`(multi-region).
content_field (str) – Specifies the column to store the content. Defaults to content.
metadata_field (str) – Specifies the column to store the metadata. Defaults to metadata.
text_embedding_field (str) – Specifies the column to store the embeddings vector. Defaults to text_embedding.
doc_id_field (str) – Specifies the column to store the document id. Defaults to doc_id.
distance_strategy (DistanceStrategy, optional) –
Determines the strategy employed for calculating the distance between vectors in the embedding space. Defaults to EUCLIDEAN_DISTANCE. Available options are: - COSINE: Measures the similarity between two vectors of an inner
product space.
- EUCLIDEAN_DISTANCE: Computes the Euclidean distance between
two vectors. This metric considers the geometric distance in the vector space, and might be more suitable for embeddings that rely on spatial relationships. This is the default behavior
credentials (Credentials, optional) – Custom Google Cloud credentials to use. Defaults to None.
Attributes
embeddings
Access the query embedding object if available.
full_table_id
Methods
__init__
(embedding, project_id, ...[, ...])Constructor for BigQueryVectorSearch.
aadd_documents
(documents, **kwargs)Async run more documents through the embeddings and add to the vectorstore.
aadd_texts
(texts[, metadatas])Async run more texts through the embeddings and add to the vectorstore.
add_documents
(documents, **kwargs)Add or update documents in the vectorstore.
add_texts
(texts[, metadatas])Run more texts through the embeddings and add to the vectorstore.
add_texts_with_embeddings
(texts, embs[, ...])Run more texts through the embeddings and add to the vectorstore.
adelete
([ids])Delete by vector ID or other criteria.
afrom_documents
(documents, embedding, **kwargs)Async return VectorStore initialized from documents and embeddings.
afrom_texts
(texts, embedding[, metadatas])Async return VectorStore initialized from texts and embeddings.
aget_by_ids
(ids, /)Async get documents by their IDs.
amax_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
as_retriever
(**kwargs)Return VectorStoreRetriever initialized from this VectorStore.
asearch
(query, search_type, **kwargs)Async return docs most similar to query using a specified search type.
asimilarity_search
(query[, k])Async return docs most similar to query.
asimilarity_search_by_vector
(embedding[, k])Async return docs most similar to embedding vector.
Async return docs and relevance scores in the range [0, 1].
asimilarity_search_with_score
(*args, **kwargs)Async run similarity search with distance.
astreaming_upsert
(items, /, batch_size, **kwargs)aupsert
(items, /, **kwargs)delete
([ids])Delete by vector ID or other criteria.
explore_job_stats
(job_id)Return the statistics for a single job execution.
from_documents
(documents, embedding, **kwargs)Return VectorStore initialized from documents and embeddings.
from_texts
(texts, embedding[, metadatas])Return VectorStore initialized from texts and embeddings.
get_by_ids
(ids, /)Get documents by their IDs.
get_documents
([ids, filter])Search documents by their ids or metadata values.
max_marginal_relevance_search
(query[, k, ...])Return docs selected using the maximal marginal relevance.
Return docs selected using the maximal marginal relevance.
search
(query, search_type, **kwargs)Return docs most similar to query using a specified search type.
similarity_search
(query[, k, filter, ...])Run similarity search.
similarity_search_by_vector
(embedding[, k, ...])Return docs most similar to embedding vector.
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score
(query[, k, ...])Run similarity search with score.
similarity_search_with_score_by_vector
(embedding)Return docs most similar to embedding vector.
streaming_upsert
(items, /, batch_size, **kwargs)upsert
(items, /, **kwargs)- __init__(embedding: Embeddings, project_id: str, dataset_name: str, table_name: str, location: str = 'US', content_field: str = 'content', metadata_field: str = 'metadata', text_embedding_field: str = 'text_embedding', doc_id_field: str = 'doc_id', distance_strategy: DistanceStrategy = DistanceStrategy.EUCLIDEAN_DISTANCE, credentials: Optional[Any] = None)[source]¶
Constructor for BigQueryVectorSearch.
- Parameters
embedding (Embeddings) – Text Embedding model to use.
project_id (str) – GCP project.
dataset_name (str) – BigQuery dataset to store documents and embeddings.
table_name (str) – BigQuery table name.
location (str, optional) – BigQuery region. Defaults to `US`(multi-region).
content_field (str) – Specifies the column to store the content. Defaults to content.
metadata_field (str) – Specifies the column to store the metadata. Defaults to metadata.
text_embedding_field (str) – Specifies the column to store the embeddings vector. Defaults to text_embedding.
doc_id_field (str) – Specifies the column to store the document id. Defaults to doc_id.
distance_strategy (DistanceStrategy, optional) –
Determines the strategy employed for calculating the distance between vectors in the embedding space. Defaults to EUCLIDEAN_DISTANCE. Available options are: - COSINE: Measures the similarity between two vectors of an inner
product space.
- EUCLIDEAN_DISTANCE: Computes the Euclidean distance between
two vectors. This metric considers the geometric distance in the vector space, and might be more suitable for embeddings that rely on spatial relationships. This is the default behavior
credentials (Credentials, optional) – Custom Google Cloud credentials to use. Defaults to None.
- async aadd_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Async run more documents through the embeddings and add to the vectorstore.
- Parameters
documents (List[Document]) – Documents to add to the vectorstore.
kwargs (Any) – Additional keyword arguments.
- Returns
List of IDs of the added texts.
- Raises
ValueError – If the number of IDs does not match the number of documents.
- Return type
List[str]
- async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] ¶
Async run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (Iterable[str]) – Iterable of strings to add to the vectorstore.
metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts. Default is None.
**kwargs (Any) – vectorstore specific parameters.
- Returns
List of ids from adding the texts into the vectorstore.
- Raises
ValueError – If the number of metadatas does not match the number of texts.
ValueError – If the number of ids does not match the number of texts.
- Return type
List[str]
- add_documents(documents: List[Document], **kwargs: Any) List[str] ¶
Add or update documents in the vectorstore.
- Parameters
documents (List[Document]) – Documents to add to the vectorstore.
kwargs (Any) – Additional keyword arguments. if kwargs contains ids and documents contain ids, the ids in the kwargs will receive precedence.
- Returns
List of IDs of the added texts.
- Raises
ValueError – If the number of ids does not match the number of documents.
- Return type
List[str]
- add_texts(texts: List[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] [source]¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (List[str]) – List of strings to add to the vectorstore.
metadatas (Optional[List[dict]]) – Optional list of metadata associated with the texts.
kwargs (Any) –
- Returns
List of ids from adding the texts into the vectorstore.
- Return type
List[str]
- add_texts_with_embeddings(texts: List[str], embs: List[List[float]], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str] [source]¶
Run more texts through the embeddings and add to the vectorstore.
- Parameters
texts (List[str]) – List of strings to add to the vectorstore.
embs (List[List[float]]) – List of lists of floats with text embeddings for texts.
metadatas (Optional[List[dict]]) – Optional list of metadata associated with the texts.
kwargs (Any) –
- Returns
List of ids from adding the texts into the vectorstore.
- Return type
List[str]
- async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] [source]¶
Delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
**kwargs (Any) – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Async return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) – List of Documents to add to the vectorstore.
embedding (Embeddings) – Embedding function to use.
kwargs (Any) – Additional keyword arguments.
- Returns
VectorStore initialized from documents and embeddings.
- Return type
- async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST ¶
Async return VectorStore initialized from texts and embeddings.
- Parameters
texts (List[str]) – Texts to add to the vectorstore.
embedding (Embeddings) – Embedding function to use.
metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts. Default is None.
kwargs (Any) – Additional keyword arguments.
- Returns
VectorStore initialized from texts and embeddings.
- Return type
- async aget_by_ids(ids: Sequence[str], /) List[Document] ¶
Async get documents by their IDs.
The returned documents are expected to have the ID field set to the ID of the document in the vector store.
Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.
Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.
This method should NOT raise exceptions if no documents are found for some IDs.
- Parameters
ids (Sequence[str]) – List of ids to retrieve.
- Returns
List of Documents.
- Return type
List[Document]
New in version 0.2.11.
- async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, Any]] = None, brute_force: bool = False, fraction_lists_to_search: Optional[float] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
- Parameters
query (str) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
filter (Optional[Dict[str, Any]]) –
brute_force (bool) –
fraction_lists_to_search (Optional[float]) –
kwargs (Any) –
- Return type
List[Document]
- async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, Any]] = None, brute_force: bool = False, fraction_lists_to_search: Optional[float] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
- Parameters
embedding (List[float]) –
k (int) –
fetch_k (int) –
lambda_mult (float) –
filter (Optional[Dict[str, Any]]) –
brute_force (bool) –
fraction_lists_to_search (Optional[float]) –
kwargs (Any) –
- Return type
List[Document]
- as_retriever(**kwargs: Any) VectorStoreRetriever ¶
Return VectorStoreRetriever initialized from this VectorStore.
- Parameters
**kwargs (Any) –
Keyword arguments to pass to the search function. Can include: search_type (Optional[str]): Defines the type of search that
the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.
- search_kwargs (Optional[Dict]): Keyword arguments to pass to the
- search function. Can include things like:
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold
for similarity_score_threshold
- fetch_k: Amount of documents to pass to MMR algorithm
(Default: 20)
- lambda_mult: Diversity of results returned by MMR;
1 for minimum diversity and 0 for maximum. (Default: 0.5)
filter: Filter by document metadata
- Returns
Retriever class for VectorStore.
- Return type
Examples:
# Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} )
- async asearch(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Async return docs most similar to query using a specified search type.
- Parameters
query (str) – Input text.
search_type (str) – Type of search to perform. Can be “similarity”, “mmr”, or “similarity_score_threshold”.
**kwargs (Any) – Arguments to pass to the search method.
- Returns
List of Documents most similar to the query.
- Raises
ValueError – If search_type is not one of “similarity”, “mmr”, or “similarity_score_threshold”.
- Return type
List[Document]
- async asimilarity_search(query: str, k: int = 4, **kwargs: Any) List[Document] ¶
Async return docs most similar to query.
- Parameters
query (str) – Input text.
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) – Arguments to pass to the search method.
- Returns
List of Documents most similar to the query.
- Return type
List[Document]
- async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document] ¶
Async return docs most similar to embedding vector.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) – Arguments to pass to the search method.
- Returns
List of Documents most similar to the query vector.
- Return type
List[Document]
- async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Async return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – Input text.
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
- Returns
List of Tuples of (doc, similarity_score)
- Return type
List[Tuple[Document, float]]
- async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]] ¶
Async run similarity search with distance.
- Parameters
*args (Any) – Arguments to pass to the search method.
**kwargs (Any) – Arguments to pass to the search method.
- Returns
List of Tuples of (doc, similarity_score).
- Return type
List[Tuple[Document, float]]
- astreaming_upsert(items: AsyncIterable[Document], /, batch_size: int, **kwargs: Any) AsyncIterator[UpsertResponse] ¶
Beta
Added in 0.2.11. The API is subject to change.
Upsert documents in a streaming fashion. Async version of streaming_upsert.
- Parameters
items (AsyncIterable[Document]) – Iterable of Documents to add to the vectorstore.
batch_size (int) – The size of each batch to upsert.
kwargs (Any) – Additional keyword arguments. kwargs should only include parameters that are common to all documents. (e.g., timeout for indexing, retry policy, etc.) kwargs should not include ids to avoid ambiguous semantics. Instead the ID should be provided as part of the Document object.
- Yields
UpsertResponse – A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.
- Return type
AsyncIterator[UpsertResponse]
New in version 0.2.11.
- async aupsert(items: Sequence[Document], /, **kwargs: Any) UpsertResponse ¶
Beta
Added in 0.2.11. The API is subject to change.
Add or update documents in the vectorstore. Async version of upsert.
The upsert functionality should utilize the ID field of the Document object if it is provided. If the ID is not provided, the upsert method is free to generate an ID for the document.
When an ID is specified and the document already exists in the vectorstore, the upsert method should update the document with the new data. If the document does not exist, the upsert method should add the document to the vectorstore.
- Parameters
items (Sequence[Document]) – Sequence of Documents to add to the vectorstore.
kwargs (Any) – Additional keyword arguments.
- Returns
A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.
- Return type
New in version 0.2.11.
- delete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool] [source]¶
Delete by vector ID or other criteria.
- Parameters
ids (Optional[List[str]]) – List of ids to delete.
**kwargs (Any) – Other keyword arguments that subclasses might use.
- Returns
True if deletion is successful, False otherwise, None if not implemented.
- Return type
Optional[bool]
- explore_job_stats(job_id: str) Dict [source]¶
Return the statistics for a single job execution.
- Parameters
job_id (str) – The BigQuery Job id.
- Returns
A dictionary of job statistics for a given job.
- Return type
Dict
- classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST ¶
Return VectorStore initialized from documents and embeddings.
- Parameters
documents (List[Document]) – List of Documents to add to the vectorstore.
embedding (Embeddings) – Embedding function to use.
kwargs (Any) – Additional keyword arguments.
- Returns
VectorStore initialized from documents and embeddings.
- Return type
- classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) BigQueryVectorSearch [source]¶
Return VectorStore initialized from texts and embeddings.
- Parameters
texts (List[str]) –
embedding (Embeddings) –
metadatas (Optional[List[dict]]) –
kwargs (Any) –
- Return type
- get_by_ids(ids: Sequence[str], /) List[Document] ¶
Get documents by their IDs.
The returned documents are expected to have the ID field set to the ID of the document in the vector store.
Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.
Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.
This method should NOT raise exceptions if no documents are found for some IDs.
- Parameters
ids (Sequence[str]) – List of ids to retrieve.
- Returns
List of Documents.
- Return type
List[Document]
New in version 0.2.11.
- get_documents(ids: Optional[List[str]] = None, filter: Optional[Dict[str, Any]] = None) List[Document] [source]¶
Search documents by their ids or metadata values.
- Parameters
ids (Optional[List[str]]) – List of ids of documents to retrieve from the vectorstore.
filter (Optional[Dict[str, Any]]) –
Filter on metadata properties, e.g. {
”str_property”: “foo”, “int_property”: 123
}
- Returns
List of ids from adding the texts into the vectorstore.
- Return type
List[Document]
- max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, Any]] = None, brute_force: bool = False, fraction_lists_to_search: Optional[float] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
query (str) – search query text.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, Any]]) –
Filter on metadata properties, e.g. {
”str_property”: “foo”, “int_property”: 123
}
brute_force (bool) – Whether to use brute force search. Defaults to False.
fraction_lists_to_search (Optional[float]) – Optional percentage of lists to search, must be in range 0.0 and 1.0, exclusive. If Node, uses service’s default which is 0.05.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, Any]] = None, brute_force: bool = False, fraction_lists_to_search: Optional[float] = None, **kwargs: Any) List[Document] [source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
filter (Optional[Dict[str, Any]]) –
Filter on metadata properties, e.g. {
”str_property”: “foo”, “int_property”: 123
}
brute_force (bool) – Whether to use brute force search. Defaults to False.
fraction_lists_to_search (Optional[float]) – Optional percentage of lists to search, must be in range 0.0 and 1.0, exclusive. If Node, uses service’s default which is 0.05.
kwargs (Any) –
- Returns
List of Documents selected by maximal marginal relevance.
- Return type
List[Document]
- search(query: str, search_type: str, **kwargs: Any) List[Document] ¶
Return docs most similar to query using a specified search type.
- Parameters
query (str) – Input text
search_type (str) – Type of search to perform. Can be “similarity”, “mmr”, or “similarity_score_threshold”.
**kwargs (Any) – Arguments to pass to the search method.
- Returns
List of Documents most similar to the query.
- Raises
ValueError – If search_type is not one of “similarity”, “mmr”, or “similarity_score_threshold”.
- Return type
List[Document]
- similarity_search(query: str, k: int = 4, filter: Optional[Dict[str, Any]] = None, brute_force: bool = False, fraction_lists_to_search: Optional[float] = None, **kwargs: Any) List[Document] [source]¶
Run similarity search.
- Parameters
query (str) – search query text.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, Any]]) –
Filter on metadata properties, e.g. {
”str_property”: “foo”, “int_property”: 123
}
brute_force (bool) – Whether to use brute force search. Defaults to False.
fraction_lists_to_search (Optional[float]) – Optional percentage of lists to search, must be in range 0.0 and 1.0, exclusive. If Node, uses service’s default which is 0.05.
kwargs (Any) –
- Returns
List of Documents most similar to the query vector.
- Return type
List[Document]
- similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[Dict[str, Any]] = None, brute_force: bool = False, fraction_lists_to_search: Optional[float] = None, **kwargs: Any) List[Document] [source]¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, Any]]) –
Filter on metadata properties, e.g. {
”str_property”: “foo”, “int_property”: 123
}
brute_force (bool) – Whether to use brute force search. Defaults to False.
fraction_lists_to_search (Optional[float]) – Optional percentage of lists to search, must be in range 0.0 and 1.0, exclusive. If Node, uses service’s default which is 0.05.
kwargs (Any) –
- Returns
List of Documents most similar to the query vector.
- Return type
List[Document]
- similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]] ¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
- Parameters
query (str) – Input text.
k (int) – Number of Documents to return. Defaults to 4.
**kwargs (Any) –
kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs.
- Returns
List of Tuples of (doc, similarity_score).
- Return type
List[Tuple[Document, float]]
- similarity_search_with_score(query: str, k: int = 4, filter: Optional[Dict[str, Any]] = None, brute_force: bool = False, fraction_lists_to_search: Optional[float] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Run similarity search with score.
- Parameters
query (str) – search query text.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, Any]]) –
Filter on metadata properties, e.g. {
”str_property”: “foo”, “int_property”: 123
}
brute_force (bool) – Whether to use brute force search. Defaults to False.
fraction_lists_to_search (Optional[float]) – Optional percentage of lists to search, must be in range 0.0 and 1.0, exclusive. If Node, uses service’s default which is 0.05.
kwargs (Any) –
- Returns
List of Documents most similar to the query vector, with similarity scores.
- Return type
List[Tuple[Document, float]]
- similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, filter: Optional[Dict[str, Any]] = None, brute_force: bool = False, fraction_lists_to_search: Optional[float] = None, **kwargs: Any) List[Tuple[Document, float]] [source]¶
Return docs most similar to embedding vector.
- Parameters
embedding (List[float]) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, Any]]) –
Filter on metadata properties, e.g. {
”str_property”: “foo”, “int_property”: 123
}
brute_force (bool) – Whether to use brute force search. Defaults to False.
fraction_lists_to_search (Optional[float]) – Optional percentage of lists to search, must be in range 0.0 and 1.0, exclusive. If Node, uses service’s default which is 0.05.
kwargs (Any) –
- Returns
List of Documents most similar to the query vector with distance.
- Return type
List[Tuple[Document, float]]
- streaming_upsert(items: Iterable[Document], /, batch_size: int, **kwargs: Any) Iterator[UpsertResponse] ¶
Beta
Added in 0.2.11. The API is subject to change.
Upsert documents in a streaming fashion.
- Parameters
items (Iterable[Document]) – Iterable of Documents to add to the vectorstore.
batch_size (int) – The size of each batch to upsert.
kwargs (Any) – Additional keyword arguments. kwargs should only include parameters that are common to all documents. (e.g., timeout for indexing, retry policy, etc.) kwargs should not include ids to avoid ambiguous semantics. Instead, the ID should be provided as part of the Document object.
- Yields
UpsertResponse – A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.
- Return type
Iterator[UpsertResponse]
New in version 0.2.11.
- upsert(items: Sequence[Document], /, **kwargs: Any) UpsertResponse ¶
Beta
Added in 0.2.11. The API is subject to change.
Add or update documents in the vectorstore.
The upsert functionality should utilize the ID field of the Document object if it is provided. If the ID is not provided, the upsert method is free to generate an ID for the document.
When an ID is specified and the document already exists in the vectorstore, the upsert method should update the document with the new data. If the document does not exist, the upsert method should add the document to the vectorstore.
- Parameters
items (Sequence[Document]) – Sequence of Documents to add to the vectorstore.
kwargs (Any) – Additional keyword arguments.
- Returns
A response object that contains the list of IDs that were successfully added or updated in the vectorstore and the list of IDs that failed to be added or updated.
- Return type
New in version 0.2.11.