langchain_community.tools.plugin
.AIPluginTool¶
Note
AIPluginTool 实现了标准的 Runnable 接口
。 🏃
Runnable 接口
具有在 runnables 上可用的附加方法,例如 with_types
, with_retry
, assign
, bind
, get_graph
, 以及更多。
- class langchain_community.tools.plugin.AIPluginTool[source]¶
基类:
BaseTool
用于获取 AI 插件的 OpenAPI 规范的工具。
初始化工具。
- param api_spec: str [必填]¶
- param args_schema: Type[AIPluginToolSchema] = <class 'langchain_community.tools.plugin.AIPluginToolSchema'>¶
Pydantic 模型类,用于验证和解析工具的输入参数。
Args schema 应该是以下之一
pydantic.BaseModel 的子类。
或 - pydantic.v1.BaseModel 的子类(如果在 pydantic 2 中访问 v1 命名空间)
- param callback_manager: Optional[BaseCallbackManager] = None¶
已弃用。请使用 callbacks 代替。
- param callbacks: Callbacks = None¶
在工具执行期间要调用的回调。
- param description: str [必填]¶
用于告知模型如何/何时/为何使用该工具。
您可以提供少量示例作为描述的一部分。
- param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
处理抛出的 ToolException 的内容。
- param handle_validation_error: Optional[Union[bool, str, Callable[[ValidationError], str]]] = False¶
处理抛出的 ValidationError 的内容。
- param metadata: Optional[Dict[str, Any]] = None¶
与工具关联的可选元数据。默认为 None。此元数据将与每次调用此工具关联,并作为参数传递给 callbacks 中定义的处理程序。您可以使用这些来例如标识工具的特定实例及其用例。
- param response_format: Literal['content', 'content_and_artifact'] = 'content'¶
工具响应格式。默认为 ‘content’。
如果为 “content”,则工具的输出被解释为 ToolMessage 的内容。如果为 “content_and_artifact”,则输出应为与 ToolMessage 的(内容,工件)对应的二元组。
- param return_direct: bool = False¶
是否直接返回工具的输出。
设置为 True 意味着在调用工具后,AgentExecutor 将停止循环。
- param tags: Optional[List[str]] = None¶
与工具关联的可选标签列表。默认为 None。这些标签将与每次调用此工具关联,并作为参数传递给 callbacks 中定义的处理程序。您可以使用这些来例如标识工具的特定实例及其用例。
- param verbose: bool = False¶
是否记录工具的进度。
- __call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) str ¶
Deprecated since version langchain-core==0.1.47: Use
invoke
instead.使工具可调用。
- 参数
tool_input (str) –
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
- 返回类型
str
- async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
默认实现使用 asyncio.gather 并行运行 ainvoke。
batch 的默认实现非常适合 IO 绑定的 runnables。
如果子类可以更有效地进行批处理,则应覆盖此方法;例如,如果底层 Runnable 使用支持批处理模式的 API。
- 参数
inputs (List[Input]) – Runnable 的输入列表。
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – 调用 Runnable 时要使用的配置。该配置支持标准键,如 ‘tags’、‘metadata’ 用于跟踪目的,‘max_concurrency’ 用于控制并行执行多少工作,以及其他键。请参阅 RunnableConfig 了解更多详情。默认为 None。
return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。
kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。
- 返回值
来自 Runnable 的输出列表。
- 返回类型
List[Output]
- async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]] ¶
并行运行输入列表上的 ainvoke,并在完成时产生结果。
- 参数
inputs (Sequence[Input]) – Runnable 的输入列表。
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – 调用 Runnable 时要使用的配置。该配置支持标准键,如 ‘tags’、‘metadata’ 用于跟踪目的,‘max_concurrency’ 用于控制并行执行多少工作,以及其他键。请参阅 RunnableConfig 了解更多详情。默认为 None。默认为 None。
return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。
kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。
- Yields
输入索引和 Runnable 输出的元组。
- 返回类型
AsyncIterator[Tuple[int, Union[Output, Exception]]]
- async ainvoke(input: Union[str, Dict, ToolCall], config: Optional[RunnableConfig] = None, **kwargs: Any) Any ¶
ainvoke 的默认实现,从线程调用 invoke。
即使 Runnable 没有实现 invoke 的原生异步版本,默认实现也允许使用异步代码。
如果子类可以异步运行,则应覆盖此方法。
- 参数
input (Union[str, Dict, ToolCall]) –
config (Optional[RunnableConfig]) –
kwargs (Any) –
- 返回类型
Any
- async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, run_id: Optional[UUID] = None, config: Optional[RunnableConfig] = None, tool_call_id: Optional[str] = None, **kwargs: Any) Any ¶
异步运行工具。
- 参数
tool_input (Union[str, Dict]) – 工具的输入。
verbose (Optional[bool]) – 是否记录工具的进度。默认为 None。
start_color (Optional[str]) – 启动工具时要使用的颜色。默认为 ‘green’。
color (Optional[str]) – 结束工具时要使用的颜色。默认为 ‘green’。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 在工具执行期间要调用的回调。默认为 None。
tags (Optional[List[str]]) – 与工具关联的可选标签列表。默认为 None。
metadata (Optional[Dict[str, Any]]) – 与工具关联的可选元数据。默认为 None。
run_name (Optional[str]) – 运行的名称。默认为 None。
run_id (Optional[UUID]) – 运行的 ID。默认为 None。
config (Optional[RunnableConfig]) – 工具的配置。默认为 None。
tool_call_id (Optional[str]) – 工具调用的 ID。默认为 None。
kwargs (Any) – 传递给工具的其他参数
- 返回值
工具的输出。
- Raises
ToolException – 如果工具执行期间发生错误。
- 返回类型
Any
- as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool ¶
Beta
此 API 处于 Beta 阶段,未来可能会发生变化。
从 Runnable 创建一个 BaseTool。
as_tool
将从 Runnable 实例化一个具有名称、描述和args_schema
的 BaseTool。在可能的情况下,模式从runnable.get_input_schema
推断。或者(例如,如果 Runnable 接受 dict 作为输入,并且未键入特定的 dict 键),可以直接使用args_schema
指定模式。您也可以传递arg_types
以仅指定必需的参数及其类型。- 参数
args_schema (Optional[Type[BaseModel]]) – 工具的模式。默认为 None。
name (Optional[str]) – 工具的名称。默认为 None。
description (Optional[str]) – 工具的描述。默认为 None。
arg_types (Optional[Dict[str, Type]]) – 参数名称到类型的字典。默认为 None。
- 返回值
一个 BaseTool 实例。
- 返回类型
类型化 dict 输入
from typing import List from typing_extensions import TypedDict from langchain_core.runnables import RunnableLambda class Args(TypedDict): a: int b: List[int] def f(x: Args) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool() as_tool.invoke({"a": 3, "b": [1, 2]})
dict
输入,通过args_schema
指定模式from typing import Any, Dict, List from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) class FSchema(BaseModel): """Apply a function to an integer and list of integers.""" a: int = Field(..., description="Integer") b: List[int] = Field(..., description="List of ints") runnable = RunnableLambda(f) as_tool = runnable.as_tool(FSchema) as_tool.invoke({"a": 3, "b": [1, 2]})
dict
输入,通过arg_types
指定模式from typing import Any, Dict, List from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]}) as_tool.invoke({"a": 3, "b": [1, 2]})
字符串输入
from langchain_core.runnables import RunnableLambda def f(x: str) -> str: return x + "a" def g(x: str) -> str: return x + "z" runnable = RunnableLambda(f) | g as_tool = runnable.as_tool() as_tool.invoke("b")
0.2.14 版本新增功能。
- async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output] ¶
astream 的默认实现,它调用 ainvoke。如果子类支持流式输出,则应覆盖此方法。
- 参数
input (Input) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。
kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。
- Yields
Runnable 的输出。
- 返回类型
AsyncIterator[Output]
- astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]] ¶
Beta
此 API 处于 Beta 阶段,未来可能会发生变化。
生成事件流。
用于创建 StreamEvents 的迭代器,该迭代器提供关于 Runnable 进度的实时信息,包括来自中间结果的 StreamEvents。
StreamEvent 是具有以下模式的字典
event
: str - 事件名称的格式为格式:on_[runnable_type]_(start|stream|end)。
name
: str - 生成事件的 Runnable 的名称。run_id
: str - 随机生成的 ID,与给定 Runnable 执行相关联,该 Runnable 发出事件。作为父 Runnable 执行一部分调用的子 Runnable 将被分配其自己的唯一 ID。Runnable 发出事件。作为父 Runnable 执行一部分调用的子 Runnable 将被分配其自己的唯一 ID。
parent_ids
: List[str] - 生成事件的父 runnables 的 ID。根 Runnable 将具有空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
tags
: Optional[List[str]] - 生成事件的 Runnable 的标签。the event.
metadata
: Optional[Dict[str, Any]] - 生成事件的 Runnable 的元数据。that generated the event.
data
: Dict[str, Any]
下面是一个表格,说明了各种链可能发出的一些事件。为了简洁起见,表中省略了元数据字段。链定义已包含在表格之后。
注意 此参考表适用于模式的 V2 版本。
event
name
chunk
input
output
on_chat_model_start
[模型名称]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[模型名称]
AIMessageChunk(content=”hello”)
on_chat_model_end
[模型名称]
{“messages”: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=”hello world”)
on_llm_start
[模型名称]
{‘input’: ‘hello’}
on_llm_stream
[模型名称]
‘Hello’
on_llm_end
[模型名称]
‘Hello human!’
on_chain_start
format_docs
on_chain_stream
format_docs
“hello world!, goodbye world!”
on_chain_end
format_docs
[Document(…)]
“hello world!, goodbye world!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[检索器名称]
{“query”: “hello”}
on_retriever_end
[检索器名称]
{“query”: “hello”}
[Document(…), ..]
on_prompt_start
[模板名称]
{“question”: “hello”}
on_prompt_end
[模板名称]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
除了标准事件外,用户还可以调度自定义事件(请参阅下面的示例)。
自定义事件将仅在 API 的 v2 版本中显示!
自定义事件具有以下格式
属性
类型
描述
name
str
用户定义的事件名称。
data
Any
与事件关联的数据。这可以是任何内容,但我们建议使其可 JSON 序列化。
以下是与上面所示的标准事件关联的声明
format_docs:
def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool:
@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
prompt:
template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
示例
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
示例:调度自定义事件
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- 参数
input (Any) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。
version (Literal['v1', 'v2']) – 要使用的模式版本,v2 或 v1。用户应使用 v2。v1 用于向后兼容,将在 0.4.0 中弃用。在 API 稳定之前,不会分配默认值。自定义事件将仅在 v2 中显示。
include_names (Optional[Sequence[str]]) – 仅包括来自具有匹配名称的 runnables 的事件。
include_types (Optional[Sequence[str]]) – 仅包括来自具有匹配类型的 runnables 的事件。
include_tags (Optional[Sequence[str]]) – 仅包括来自具有匹配标签的 runnables 的事件。
exclude_names (Optional[Sequence[str]]) – 排除来自具有匹配名称的 runnables 的事件。
exclude_types (Optional[Sequence[str]]) – 排除来自具有匹配类型的 runnables 的事件。
exclude_tags (Optional[Sequence[str]]) – 排除来自具有匹配标签的 runnables 的事件。
kwargs (Any) – 要传递给 Runnable 的其他关键字参数。这些参数将传递给 astream_log,因为 astream_events 的此实现是基于 astream_log 构建的。
- Yields
StreamEvents 的异步流。
- Raises
NotImplementedError – 如果版本不是 v1 或 v2。
- 返回类型
AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]
- batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
默认实现使用线程池执行器并行运行 invoke。
batch 的默认实现非常适合 IO 绑定的 runnables。
如果子类可以更有效地进行批处理,则应覆盖此方法;例如,如果底层 Runnable 使用支持批处理模式的 API。
- 参数
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- 返回类型
List[Output]
- batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) Iterator[Tuple[int, Union[Output, Exception]]] ¶
在输入列表上并行运行 invoke,并在结果完成时生成结果。
- 参数
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- 返回类型
Iterator[Tuple[int, Union[Output, Exception]]]
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output] ¶
配置可在运行时设置的 Runnables 的替代方案。
- 参数
which (ConfigurableField) – 将用于选择替代方案的 ConfigurableField 实例。
default_key (str) – 如果未选择任何替代方案,则使用的默认键。默认为“default”。
prefix_keys (bool) – 是否使用 ConfigurableField id 作为键的前缀。默认为 False。
**kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – 键到 Runnable 实例或返回 Runnable 实例的可调用对象的字典。
- 返回值
配置了替代方案的新 Runnable。
- 返回类型
RunnableSerializable[Input, Output]
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content )
- configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output] ¶
在运行时配置特定的 Runnable 字段。
- 参数
**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – 要配置的 ConfigurableField 实例的字典。
- 返回值
配置了字段的新 Runnable。
- 返回类型
RunnableSerializable[Input, Output]
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content )
- classmethod from_plugin_url(url: str) AIPluginTool [source]¶
- 参数
url (str) –
- 返回类型
- invoke(input: Union[str, Dict, ToolCall], config: Optional[RunnableConfig] = None, **kwargs: Any) Any ¶
将单个输入转换为输出。覆盖以实现。
- 参数
input (Union[str, Dict, ToolCall]) – Runnable 的输入。
config (Optional[RunnableConfig]) – 调用 Runnable 时要使用的配置。该配置支持标准键,如用于跟踪目的的“tags”、“metadata”,用于控制并行执行多少工作的“max_concurrency”以及其他键。有关更多详细信息,请参阅 RunnableConfig。
kwargs (Any) –
- 返回值
Runnable 的输出。
- 返回类型
Any
- run(tool_input: Union[str, Dict[str, Any]], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, run_id: Optional[UUID] = None, config: Optional[RunnableConfig] = None, tool_call_id: Optional[str] = None, **kwargs: Any) Any ¶
运行工具。
- 参数
tool_input (Union[str, Dict[str, Any]]) – 工具的输入。
verbose (Optional[bool]) – 是否记录工具的进度。默认为 None。
start_color (Optional[str]) – 启动工具时要使用的颜色。默认为 ‘green’。
color (Optional[str]) – 结束工具时要使用的颜色。默认为 ‘green’。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 在工具执行期间要调用的回调。默认为 None。
tags (Optional[List[str]]) – 与工具关联的可选标签列表。默认为 None。
metadata (Optional[Dict[str, Any]]) – 与工具关联的可选元数据。默认为 None。
run_name (Optional[str]) – 运行的名称。默认为 None。
run_id (Optional[UUID]) – 运行的 ID。默认为 None。
config (Optional[RunnableConfig]) – 工具的配置。默认为 None。
tool_call_id (Optional[str]) – 工具调用的 ID。默认为 None。
kwargs (Any) – 传递给工具的其他参数
- 返回值
工具的输出。
- Raises
ToolException – 如果工具执行期间发生错误。
- 返回类型
Any
- stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) Iterator[Output] ¶
流式处理的默认实现,它调用 invoke 方法。如果子类支持流式输出,则应重写此方法。
- 参数
input (Input) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。
kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。
- Yields
Runnable 的输出。
- 返回类型
Iterator[Output]
- to_json() Union[SerializedConstructor, SerializedNotImplemented] ¶
将 Runnable 序列化为 JSON。
- 返回值
Runnable 的 JSON 可序列化表示。
- 返回类型
- property args: dict¶
- property is_single_input: bool¶
工具是否只接受单个输入。
- property tool_call_schema: Type[BaseModel]¶