langchain.retrievers.parent_document_retriever.ParentDocumentRetriever

Note

ParentDocumentRetriever implements the standard Runnable Interface. 🏃

The Runnable Interface has additional methods that are available on runnables, such as with_types, with_retry, assign, bind, get_graph, and more.

class langchain.retrievers.parent_document_retriever.ParentDocumentRetriever[source]

Bases: MultiVectorRetriever

Retrieve small chunks then retrieve their parent documents.

When splitting documents for retrieval, there are often conflicting desires

  1. You may want to have small documents, so that their embeddings can most

    accurately reflect their meaning. If too long, then the embeddings can lose meaning.

  2. You want to have long enough documents that the context of each chunk is

    retained.

The ParentDocumentRetriever strikes that balance by splitting and storing small chunks of data. During retrieval, it first fetches the small chunks but then looks up the parent ids for those chunks and returns those larger documents.

Note that “parent document” refers to the document that a small chunk originated from. This can either be the whole raw document OR a larger chunk.

Examples

from langchain_chroma import Chroma
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.storage import InMemoryStore

# This text splitter is used to create the parent documents
parent_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, add_start_index=True)
# This text splitter is used to create the child documents
# It should create documents smaller than the parent
child_splitter = RecursiveCharacterTextSplitter(chunk_size=400, add_start_index=True)
# The vectorstore to use to index the child chunks
vectorstore = Chroma(embedding_function=OpenAIEmbeddings())
# The storage layer for the parent documents
store = InMemoryStore()

# Initialize the retriever
retriever = ParentDocumentRetriever(
    vectorstore=vectorstore,
    docstore=store,
    child_splitter=child_splitter,
    parent_splitter=parent_splitter,
)
param byte_store: Optional[ByteStore] = None

The lower-level backing storage layer for the parent documents

param child_metadata_fields: Optional[Sequence[str]] = None

Metadata fields to leave in child documents. If None, leave all parent document metadata.

param child_splitter: TextSplitter [Required]

The text splitter to use to create child documents.

param docstore: BaseStore[str, Document] [Required]

The storage interface for the parent documents

param id_key: str = 'doc_id'
param metadata: Optional[Dict] = None

Optional metadata associated with the retriever. Defaults to None. This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a retriever with its use case.

param parent_splitter: Optional[TextSplitter] = None

The text splitter to use to create parent documents. If none, then the parent documents will be the raw documents passed in.

param search_kwargs: dict [Optional]

Keyword arguments to pass to the search function.

param search_type: SearchType = SearchType.similarity

Type of search to perform (similarity / mmr)

param tags: Optional[List[str]] = None

Optional list of tags associated with the retriever. Defaults to None. These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a retriever with its use case.

param vectorstore: VectorStore [Required]

The underlying vectorstore to use to store small chunks and their embedding vectors

async aadd_documents(documents: List[Document], ids: Optional[List[str]] = None, add_to_docstore: bool = True, **kwargs: Any) None[source]
Parameters
  • documents (List[Document]) –

  • ids (Optional[List[str]]) –

  • add_to_docstore (bool) –

  • kwargs (Any) –

Return type

None

async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output]

Default implementation runs ainvoke in parallel using asyncio.gather.

The default implementation of batch works well for IO bound runnables.

Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

Parameters
  • inputs (List[Input]) – A list of inputs to the Runnable.

  • config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – A config to use when invoking the Runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

  • return_exceptions (bool) – Whether to return exceptions instead of raising them. Defaults to False.

  • kwargs (Optional[Any]) – Additional keyword arguments to pass to the Runnable.

Returns

A list of outputs from the Runnable.

Return type

List[Output]

async abatch_as_completed(inputs: Sequence">[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]]

Run ainvoke in parallel on a list of inputs, yielding results as they complete.

Parameters
  • inputs (Sequence[Input]) – A list of inputs to the Runnable.

  • config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – A config to use when invoking the Runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None. Defaults to None.

  • return_exceptions (bool) – Whether to return exceptions instead of raising them. Defaults to False.

  • kwargs (Optional[Any]) – Additional keyword arguments to pass to the Runnable.

Yields

A tuple of the index of the input and the output from the Runnable.

Return type

AsyncIterator[Tuple[int, Union[Output, Exception]]]

add_documents(documents: List[Document], ids: Optional[List[str]] = None, add_to_docstore: bool = True, **kwargs: Any) None[source]

Adds documents to the docstore and vectorstores.

Parameters
  • documents (List[Document]) – List of documents to add

  • ids (Optional[List[str]]) – Optional list of ids for documents. If provided should be the same length as the list of documents. Can be provided if parent documents are already in the document store and you don’t want to re-add to the docstore. If not provided, random UUIDs will be used as ids.

  • add_to_docstore (bool) – Boolean of whether to add documents to docstore. This can be false if and only if ids are provided. You may want to set this to False if the documents are already in the docstore and you don’t want to re-add them.

  • kwargs (Any) –

Return type

None

async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) List[Document]

Deprecated since version langchain-core==0.1.46: Use ainvoke instead.

Asynchronously get documents relevant to a query.

Users should favor using .ainvoke or .abatch rather than aget_relevant_documents directly.

Parameters
  • query (str) – string to find relevant documents for.

  • callbacks (Callbacks) – Callback manager or list of callbacks.

  • tags (Optional[List[str]]) – Optional list of tags associated with the retriever. These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Defaults to None.

  • metadata (Optional[Dict[str, Any]]) – Optional metadata associated with the retriever. This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Defaults to None.

  • run_name (Optional[str]) – Optional name for the run. Defaults to None.

  • kwargs (Any) – Additional arguments to pass to the retriever.

Returns

List of relevant documents.

Return type

List[Document]

async ainvoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Any) List[Document]

Asynchronously invoke the retriever to get relevant documents.

Main entry point for asynchronous retriever invocations.

Parameters
  • input (str) – The query string.

  • config (Optional[RunnableConfig]) – Configuration for the retriever. Defaults to None.

  • kwargs (Any) – Additional arguments to pass to the retriever.

Returns

List of relevant documents.

Return type

List[Document]

Examples

await retriever.ainvoke("query")
as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool

Beta

This API is in beta and may change in the future.

Create a BaseTool from a Runnable.

as_tool 将会从 Runnable 实例化一个带有名称、描述和 args_schema 的 BaseTool。如果可能,schema 会从 runnable.get_input_schema 中推断。或者(例如,如果 Runnable 接受一个 dict 作为输入,并且特定的 dict 键没有类型),schema 可以直接用 args_schema 指定。你也可以传递 arg_types 来仅指定必需的参数及其类型。

Parameters
  • args_schema (Optional[Type[BaseModel]]) – 工具的 schema。默认为 None。

  • name (Optional[str]) – 工具的名称。默认为 None。

  • description (Optional[str]) – 工具的描述。默认为 None。

  • arg_types (Optional[Dict[str, Type]]) – 参数名称到类型的字典。默认为 None。

Returns

一个 BaseTool 实例。

Return type

BaseTool

Typed dict input (类型化字典输入)

from typing import List
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda

class Args(TypedDict):
    a: int
    b: List[int]

def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))

runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input (字典输入), 通过 args_schema 指定 schema

from typing import Any, Dict, List
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: Dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: List[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input (字典输入), 通过 arg_types 指定 schema

from typing import Any, Dict, List
from langchain_core.runnables import RunnableLambda

def f(x: Dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

String input (字符串输入)

from langchain_core.runnables import RunnableLambda

def f(x: str) -> str:
    return x + "a"

def g(x: str) -> str:
    return x + "z"

runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

New in version 0.2.14. (0.2.14 版本新增特性)

async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output]

`astream` 的默认实现,它调用 `ainvoke`。如果子类支持流式输出,则应覆盖此方法。

Parameters
  • input (Input) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。

  • kwargs (Optional[Any]) – Additional keyword arguments to pass to the Runnable.

Yields

Runnable 的输出。

Return type

AsyncIterator[Output] (异步迭代器 [输出])

astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]

Beta

This API is in beta and may change in the future.

生成一个事件流。

用于创建一个 StreamEvents 的迭代器,该迭代器提供关于 Runnable 进度的实时信息,包括来自中间结果的 StreamEvents。

StreamEvent 是一个具有以下 schema 的字典

  • event: str - 事件名称的格式为:

    format: on_[runnable_type]_(start|stream|end). (格式:on_[runnable_type]_(start|stream|end).)

  • name: str - 生成事件的 Runnable 的名称。

  • run_id: str - 随机生成的 ID,与给定 Runnable 执行的

    事件相关联。作为父 Runnable 执行的一部分而被调用的子 Runnable 将被分配其自己唯一的 ID。

  • parent_ids: List[str] - 生成事件的父 runnables 的 ID 列表。

    根 Runnable 将有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。

  • tags: Optional[List[str]] - 生成事件的 Runnable 的标签。

    事件。

  • metadata: Optional[Dict[str, Any]] - 生成事件的 Runnable 的元数据。

    事件。

  • data: Dict[str, Any]

下面是一个表格,说明了各种链可能发出的一些事件。为了简洁起见,表格中省略了元数据字段。链定义已包含在表格之后。

ATTENTION (注意) 此参考表适用于 schema 的 V2 版本。

event (事件)

name (名称)

chunk (块)

input (输入)

output (输出)

on_chat_model_start

[model name] (模型名称)

{“messages”: [[SystemMessage, HumanMessage]]}

on_chat_model_stream

[model name] (模型名称)

AIMessageChunk(content=”hello”)

on_chat_model_end

[model name] (模型名称)

{“messages”: [[SystemMessage, HumanMessage]]}

AIMessageChunk(content=”hello world”)

on_llm_start

[model name] (模型名称)

{‘input’: ‘hello’}

on_llm_stream

[model name] (模型名称)

‘Hello’

on_llm_end

[model name] (模型名称)

‘Hello human!’

on_chain_start

format_docs

on_chain_stream

format_docs

“hello world!, goodbye world!”

on_chain_end

format_docs

[Document(…)]

“hello world!, goodbye world!”

on_tool_start

some_tool

{“x”: 1, “y”: “2”}

on_tool_end

some_tool

{“x”: 1, “y”: “2”}

on_retriever_start

[retriever name] (检索器名称)

{“query”: “hello”}

on_retriever_end

[retriever name] (检索器名称)

{“query”: “hello”}

[Document(…), ..]

on_prompt_start

[template_name] (模板名称)

{“question”: “hello”}

on_prompt_end

[template_name] (模板名称)

{“question”: “hello”}

ChatPromptValue(messages: [SystemMessage, …])

除了标准事件外,用户还可以调度自定义事件(见下面的示例)。

自定义事件将仅在 API 的 v2 版本中显示!

自定义事件具有以下格式

Attribute (属性)

Type (类型)

Description (描述)

name (名称)

str

用户定义的事件名称。

data

Any (任意类型)

与事件关联的数据。这可以是任何内容,但我们建议使其 JSON 可序列化。

以下是与上面显示的标准事件相关的声明

format_docs:

def format_docs(docs: List[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])

format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

prompt (提示):

template = ChatPromptTemplate.from_messages(
    [("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})

Example (示例)

from langchain_core.runnables import RunnableLambda

async def reverse(s: str) -> str:
    return s[::-1]

chain = RunnableLambda(func=reverse)

events = [
    event async for event in chain.astream_events("hello", version="v2")
]

# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]

Example: Dispatch Custom Event (示例:调度自定义事件)

from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)
Parameters
  • input (Any) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。

  • version (Literal['v1', 'v2']) – 要使用的 schema 版本,可以是 v2v1。用户应使用 v2v1 用于向后兼容,将在 0.4.0 中弃用。在 API 稳定之前,不会分配默认值。自定义事件将仅在 v2 中显示。

  • include_names (Optional[Sequence[str]]) – 仅包含来自具有匹配名称的 runnables 的事件。

  • include_types (Optional[Sequence[str]]) – 仅包含来自具有匹配类型的 runnables 的事件。

  • include_tags (Optional[Sequence[str]]) – 仅包含来自具有匹配标签的 runnables 的事件。

  • exclude_names (Optional[Sequence[str]]) – 排除来自具有匹配名称的 runnables 的事件。

  • exclude_types (Optional[Sequence[str]]) – 排除来自具有匹配类型的 runnables 的事件。

  • exclude_tags (Optional[Sequence[str]]) – 排除来自具有匹配标签的 runnables 的事件。

  • kwargs (Any) – 要传递给 Runnable 的其他关键字参数。这些参数将传递给 astream_log,因为 astream_events 的此实现构建在 astream_log 之上。

Yields

StreamEvents 的异步流。

Raises (异常)

NotImplementedError – 如果版本不是 v1v2

Return type

AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]] (异步迭代器 [StandardStreamEvent 或 CustomStreamEvent 的联合类型])

batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output]

默认实现使用线程池执行器并行运行 invoke。

The default implementation of batch works well for IO bound runnables.

Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

Parameters
  • inputs (List[Input]) –

  • config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –

  • return_exceptions (bool) –

  • kwargs (Optional[Any]) –

Return type

List[Output]

batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) Iterator[Tuple[int, Union[Output, Exception]]]

并行运行 invoke 处理输入列表,并在完成时产生结果。

Parameters
  • inputs (Sequence[Input]) –

  • config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –

  • return_exceptions (bool) –

  • kwargs (Optional[Any]) –

Return type

Iterator[Tuple[int, Union[Output, Exception]]] (迭代器 [元组[整数, 输出或异常的联合类型]])

configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output]

配置可在运行时设置的 Runnables 的备选项。

Parameters
  • which (ConfigurableField) – 将用于选择备选项的 ConfigurableField 实例。

  • default_key (str) – 如果未选择备选项,则使用的默认键。默认为 “default”。

  • prefix_keys (bool) – 是否用 ConfigurableField id 作为键的前缀。默认为 False。

  • **kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – 键到 Runnable 实例或返回 Runnable 实例的可调用对象的字典。

Returns

配置了备选项的新 Runnable。

Return type

RunnableSerializable[Input, Output] (RunnableSerializable [输入, 输出])

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-3-sonnet-20240229"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI()
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(
        configurable={"llm": "openai"}
    ).invoke("which organization created you?").content
)
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output]

在运行时配置特定的 Runnable 字段。

Parameters

**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – 要配置的 ConfigurableField 实例的字典。

Returns

配置了字段的新 Runnable。

Return type

RunnableSerializable[Input, Output] (RunnableSerializable [输入, 输出])

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print(
    "max_tokens_20: ",
    model.invoke("tell me something about chess").content
)

# max_tokens = 200
print("max_tokens_200: ", model.with_config(
    configurable={"output_token_number": 200}
    ).invoke("tell me something about chess").content
)
get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) List[Document]

Deprecated since version langchain-core==0.1.46: Use invoke instead. (从 langchain-core==0.1.46 版本开始弃用:请使用 invoke 代替。)

检索与查询相关的文档。

用户应优先使用 .invoke.batch 而不是直接使用 get_relevant_documents

Parameters
  • query (str) – string to find relevant documents for.

  • callbacks (Callbacks) – 回调管理器或回调列表。默认为 None。

  • tags (Optional[List[str]]) – Optional list of tags associated with the retriever. These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Defaults to None.

  • metadata (Optional[Dict[str, Any]]) – Optional metadata associated with the retriever. This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Defaults to None.

  • run_name (Optional[str]) – Optional name for the run. Defaults to None.

  • kwargs (Any) – Additional arguments to pass to the retriever.

Returns

List of relevant documents.

Return type

List[Document]

invoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Any) List">[Document]

调用检索器以获取相关文档。

同步检索器调用的主要入口点。

Parameters
  • input (str) – The query string.

  • config (Optional[RunnableConfig]) – Configuration for the retriever. Defaults to None.

  • kwargs (Any) – Additional arguments to pass to the retriever.

Returns

List of relevant documents.

Return type

List[Document]

Examples

retriever.invoke("query")
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) Iterator[Output]

stream 的默认实现,它调用 invoke。如果子类支持流式输出,则应覆盖此方法。

Parameters
  • input (Input) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。

  • kwargs (Optional[Any]) – Additional keyword arguments to pass to the Runnable.

Yields

Runnable 的输出。

Return type

Iterator[Output] (迭代器 [输出])

to_json() Union[SerializedConstructor, SerializedNotImplemented]

将 Runnable 序列化为 JSON。

Returns

Runnable 的 JSON 可序列化表示。

Return type

Union[SerializedConstructor, SerializedNotImplemented]

ParentDocumentRetriever 的使用示例