langchain_core.prompts.image
.ImagePromptTemplate¶
注意
ImagePromptTemplate 实现了标准的 Runnable Interface
。 🏃
Runnable Interface
还有其他方法可用于 runnables,例如 with_types
, with_retry
, assign
, bind
, get_graph
, 等等。
- class langchain_core.prompts.image.ImagePromptTemplate[source]¶
基类:
BasePromptTemplate
[ImageURL
]多模态模型的图像提示模板。
- param input_types: Dict[str, Any] [Optional]¶
提示模板期望的变量类型的字典。如果未提供,则所有变量都假定为字符串。
- param input_variables: List[str] [Required]¶
一个变量名称列表,这些变量的值是作为提示的输入所必需的。
- param metadata: Optional[Dict[str, Any]] = None¶
用于追踪的元数据。
- param optional_variables: List[str] = []¶
optional_variables: 占位符或 MessagePlaceholder 的可选变量名称列表。这些变量是从提示中自动推断出来的,用户无需提供。
- param output_parser: Optional[BaseOutputParser] = None¶
如何解析在此格式化提示上调用 LLM 的输出。
- param partial_variables: Mapping[str, Any] [Optional]¶
提示模板携带的部分变量的字典。
部分变量填充模板,以便您无需在每次调用提示时都传递它们。
- param tags: Optional[List[str]] = None¶
用于追踪的标签。
- param template: dict [Optional]¶
提示的模板。
- async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
默认实现使用 asyncio.gather 并行运行 ainvoke。
batch 的默认实现非常适合 IO 绑定的 runnables。
如果子类可以更有效地进行批量处理,则应覆盖此方法;例如,如果底层的 Runnable 使用支持批量模式的 API。
- 参数
inputs (List[Input]) – Runnable 的输入列表。
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – 调用 Runnable 时要使用的配置。该配置支持标准键,如用于跟踪目的的 ‘tags’、‘metadata’,用于控制并行执行量的 ‘max_concurrency’ 以及其他键。有关更多详细信息,请参阅 RunnableConfig。默认为 None。
return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。
kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。
- 返回值
来自 Runnable 的输出列表。
- 返回类型
List[Output]
- async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]] ¶
并行在一系列输入上运行 ainvoke,并在结果完成时生成结果。
- 参数
inputs (Sequence[Input]) – Runnable 的输入列表。
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – 调用 Runnable 时要使用的配置。该配置支持标准键,如用于跟踪目的的 ‘tags’、‘metadata’,用于控制并行执行量的 ‘max_concurrency’ 以及其他键。有关更多详细信息,请参阅 RunnableConfig。默认为 None。默认为 None。
return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。
kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。
- Yields
输入索引和来自 Runnable 的输出的元组。
- 返回类型
AsyncIterator[Tuple[int, Union[Output, Exception]]]
- async aformat(**kwargs: Any) ImageURL [source]¶
使用输入异步格式化提示。
- 参数
kwargs (Any) – 要传递给提示模板的任何参数。
- 返回值
格式化的字符串。
- Raises
ValueError – 如果未提供 url 或路径。
ValueError – 如果路径或 url 不是字符串。
- 返回类型
- async aformat_prompt(**kwargs: Any) PromptValue [source]¶
使用输入异步格式化提示。
- 参数
kwargs (Any) – 要传递给提示模板的任何参数。
- 返回值
格式化的字符串。
- 返回类型
- async ainvoke(input: Dict, config: Optional[RunnableConfig] = None, **kwargs: Any) PromptValue ¶
异步调用提示。
- 参数
input (Dict) – Dict,提示的输入。
config (Optional[RunnableConfig]) – RunnableConfig,提示的配置。
kwargs (Any) –
- 返回值
提示的输出。
- 返回类型
- as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool ¶
Beta
此 API 处于 beta 阶段,将来可能会发生变化。
从 Runnable 创建 BaseTool。
as_tool
将从 Runnable 实例化一个具有名称、描述和args_schema
的 BaseTool。如果可能,模式将从runnable.get_input_schema
推断。或者(例如,如果 Runnable 接受 dict 作为输入,并且未键入特定的 dict 键),则可以使用args_schema
直接指定模式。您还可以传递arg_types
以仅指定必需的参数及其类型。- 参数
args_schema (Optional[Type[BaseModel]]) – 工具的模式。默认为 None。
name (Optional[str]) – 工具的名称。默认为 None。
description (Optional[str]) – 工具的描述。默认为 None。
arg_types (Optional[Dict[str, Type]]) – 参数名称到类型的字典。默认为 None。
- 返回值
BaseTool 实例。
- 返回类型
Typed dict input
from typing import List from typing_extensions import TypedDict from langchain_core.runnables import RunnableLambda class Args(TypedDict): a: int b: List[int] def f(x: Args) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool() as_tool.invoke({"a": 3, "b": [1, 2]})
dict
input,通过args_schema
指定模式from typing import Any, Dict, List from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) class FSchema(BaseModel): """Apply a function to an integer and list of integers.""" a: int = Field(..., description="Integer") b: List[int] = Field(..., description="List of ints") runnable = RunnableLambda(f) as_tool = runnable.as_tool(FSchema) as_tool.invoke({"a": 3, "b": [1, 2]})
dict
input,通过arg_types
指定模式from typing import Any, Dict, List from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]}) as_tool.invoke({"a": 3, "b": [1, 2]})
String input
from langchain_core.runnables import RunnableLambda def f(x: str) -> str: return x + "a" def g(x: str) -> str: return x + "z" runnable = RunnableLambda(f) | g as_tool = runnable.as_tool() as_tool.invoke("b")
0.2.14 版本新增。
- async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output] ¶
astream 的默认实现,它调用 ainvoke。如果子类支持流式输出,则应覆盖此方法。
- 参数
input (Input) – Runnable 的输入。
config (Optional[RunnableConfig]) – Runnable 要使用的配置。默认为 None。
kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。
- Yields
Runnable 的输出。
- 返回类型
AsyncIterator[Output]
- astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]] ¶
Beta
此 API 处于 beta 阶段,将来可能会发生变化。
生成事件流。
用于创建 StreamEvents 的迭代器,该迭代器提供有关 Runnable 进度Real-time信息,包括来自中间结果的 StreamEvents。
StreamEvent 是一个字典,具有以下模式
event
: str - 事件名称的格式为:format: on_[runnable_type]_(start|stream|end).
name
: str - 生成事件的 Runnable 的名称。run_id
: str - 随机生成的 ID,与给定 Runnable 执行相关联,该 Runnable 发出事件。作为父 Runnable 执行一部分而调用的子 Runnable 将被分配其自己的唯一 ID。the Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
parent_ids
: List[str] - 生成事件的父 runnables 的 ID。根 Runnable 将具有空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回空列表。generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
tags
: Optional[List[str]] - 生成事件的 Runnable 的标签。the event.
metadata
: Optional[Dict[str, Any]] - Runnable 的元数据that generated the event.
data
: Dict[str, Any]
下面是一个表格,说明了各种链可能发出的一些事件。为了简洁起见,表格中省略了元数据字段。链定义已包含在表格之后。
注意 此参考表适用于模式的 V2 版本。
event
name
chunk
input
output
on_chat_model_start
模型启动时
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
模型启动时
AIMessageChunk(content=”hello”)
on_chat_model_end
模型启动时
{“messages”: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=”hello world”)
on_llm_start
模型启动时
{‘input’: ‘hello’}
on_llm_stream
模型启动时
‘Hello’
on_llm_end
模型启动时
‘Hello human!’
on_chain_start
format_docs
on_chain_stream
format_docs
“hello world!, goodbye world!”
on_chain_end
format_docs
[Document(…)]
“hello world!, goodbye world!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
检索器启动时
{“query”: “hello”}
on_retriever_end
检索器启动时
{“query”: “hello”}
[Document(…), ..]
on_prompt_start
[template_name]
{“question”: “hello”}
on_prompt_end
[template_name]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
除了标准事件外,用户还可以分派自定义事件(见下面的例子)。
自定义事件将仅在 API 的 v2 版本中显示!
自定义事件具有以下格式
属性
类型
描述
name
str
用户定义的事件名称。
数据
Any
与事件关联的数据。这可以是任何内容,但我们建议使其可 JSON 序列化。
以下是与上面显示的标准事件关联的声明
format_docs:
def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool:
@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
prompt:
template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
示例
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
示例:分派自定义事件
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- 参数
input (Any) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。
version (Literal['v1', 'v2']) – 要使用的模式版本,v2 或 v1。用户应使用 v2。v1 用于向后兼容,将在 0.4.0 版本中弃用。在 API 稳定之前,不会分配默认值。自定义事件将仅在 v2 中显示。
include_names (Optional[Sequence[str]]) – 仅包含来自具有匹配名称的 runnables 的事件。
include_types (Optional[Sequence[str]]) – 仅包含来自具有匹配类型的 runnables 的事件。
include_tags (Optional[Sequence[str]]) – 仅包含来自具有匹配标签的 runnables 的事件。
exclude_names (Optional[Sequence[str]]) – 排除来自具有匹配名称的 runnables 的事件。
exclude_types (Optional[Sequence[str]]) – 排除来自具有匹配类型的 runnables 的事件。
exclude_tags (Optional[Sequence[str]]) – 排除来自具有匹配标签的 runnables 的事件。
kwargs (Any) – 要传递给 Runnable 的其他关键字参数。这些将传递给 astream_log,因为 astream_events 的此实现构建于 astream_log 之上。
- Yields
StreamEvents 的异步流。
- Raises
NotImplementedError – 如果版本不是 v1 或 v2。
- 返回类型
AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]
- batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
默认实现使用线程池执行器并行运行 invoke。
batch 的默认实现非常适合 IO 绑定的 runnables。
如果子类可以更有效地进行批量处理,则应覆盖此方法;例如,如果底层的 Runnable 使用支持批量模式的 API。
- 参数
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- 返回类型
List[Output]
- batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) Iterator[Tuple[int, Union[Output, Exception]]] ¶
并行运行列表中输入的 invoke,并在完成后生成结果。
- 参数
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- 返回类型
Iterator[Tuple[int, Union[Output, Exception]]]
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output] ¶
配置可在运行时设置的 Runnables 的备选项。
- 参数
which (ConfigurableField) – 将用于选择备选项的 ConfigurableField 实例。
default_key (str) – 如果未选择备选项,则使用的默认键。默认为“default”。
prefix_keys (bool) – 是否用 ConfigurableField id 作为键的前缀。默认为 False。
**kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – 键到 Runnable 实例或返回 Runnable 实例的可调用对象的字典。
- 返回值
配置了备选项的新 Runnable。
- 返回类型
RunnableSerializable[Input, Output]
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content )
- configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output] ¶
在运行时配置特定的 Runnable 字段。
- 参数
**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – 要配置的 ConfigurableField 实例的字典。
- 返回值
配置了字段的新 Runnable。
- 返回类型
RunnableSerializable[Input, Output]
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content )
- format(**kwargs: Any) ImageURL [source]¶
使用输入格式化提示。
- 参数
kwargs (Any) – 要传递给提示模板的任何参数。
- 返回值
格式化的字符串。
- Raises
ValueError – 如果未提供 url 或路径。
ValueError – 如果路径或 url 不是字符串。
- 返回类型
示例
prompt.format(variable1="foo")
- format_prompt(**kwargs: Any) PromptValue [source]¶
使用输入格式化提示。
- 参数
kwargs (Any) – 要传递给提示模板的任何参数。
- 返回值
格式化的字符串。
- 返回类型
- invoke(input: Dict, config: Optional[RunnableConfig] = None) PromptValue ¶
调用提示。
- 参数
input (Dict) – Dict,提示的输入。
config (Optional[RunnableConfig]) – RunnableConfig,提示的配置。
- 返回值
提示的输出。
- 返回类型
- partial(**kwargs: Union[str, Callable[[], str]]) BasePromptTemplate ¶
返回提示模板的部分应用。
- 参数
kwargs (Union[str, Callable[[], str]]) – Union[str, Callable[[], str], 要设置的部分变量。
- 返回值
提示模板的部分应用。
- 返回类型
- pretty_repr(html: bool = False) str [source]¶
返回提示的漂亮表示。
- 参数
html (bool) – 是否返回 html 格式的字符串。
- 返回值
提示的漂亮表示。
- 返回类型
str
- save(file_path: Union[Path, str]) None ¶
保存提示。
- 参数
file_path (Union[Path, str]) – 保存提示的目录路径。
- Raises
ValueError – 如果提示具有部分变量。
ValueError – 如果文件路径不是 json 或 yaml。
NotImplementedError – 如果提示类型未实现。
- 返回类型
None
示例:.. code-block:: python
prompt.save(file_path=”path/prompt.yaml”)
- stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) Iterator[Output] ¶
stream 的默认实现,它调用 invoke。如果子类支持流式输出,则应覆盖此方法。
- 参数
input (Input) – Runnable 的输入。
config (Optional[RunnableConfig]) – Runnable 要使用的配置。默认为 None。
kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。
- Yields
Runnable 的输出。
- 返回类型
Iterator[Output]
- to_json() Union[SerializedConstructor, SerializedNotImplemented] ¶
将 Runnable 序列化为 JSON。
- 返回值
Runnable 的 JSON 可序列化表示。
- 返回类型