langchain_core.output_parsers.openai_functions
.JsonOutputFunctionsParser¶
注意
JsonOutputFunctionsParser 实现了标准的 Runnable 接口
。 🏃
Runnable 接口
具有在 runnable 上可用的其他方法,例如 with_types
、with_retry
、assign
、bind
、get_graph
等。
- class langchain_core.output_parsers.openai_functions.JsonOutputFunctionsParser[source]¶
基类:
BaseCumulativeTransformOutputParser
[Any
]将输出解析为 Json 对象。
- param args_only: bool = True¶
是否仅返回函数调用的参数。
- param diff: bool = False¶
在流式模式下,是否产生先前解析的输出和当前解析的输出之间的差异,或者仅产生当前解析的输出。
- param strict: bool = False¶
是否允许不符合 JSON 规范的字符串。
参见: https://docs.pythonlang.cn/3/library/json.html#encoders-and-decoders
当解析的输出可能包含 Unicode 字符或换行符时很有用。
- async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
默认实现使用 asyncio.gather 并行运行 ainvoke。
batch 的默认实现非常适合 IO 绑定的 runnables。
如果子类可以更有效地进行批处理,则应重写此方法;例如,如果底层的 Runnable 使用支持批处理模式的 API。
- 参数
inputs (List[Input]) – Runnable 的输入列表。
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – 调用 Runnable 时要使用的配置。该配置支持标准键,如用于跟踪目的的“tags”、“metadata”,用于控制并行执行多少工作的“max_concurrency”以及其他键。有关更多详细信息,请参阅 RunnableConfig。默认为 None。
return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。
kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。
- 返回
来自 Runnable 的输出列表。
- 返回类型
List[Output]
- async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]] ¶
并行运行 ainvoke 于输入列表,并在完成时产生结果。
- 参数
inputs (Sequence[Input]) – Runnable 的输入列表。
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – 调用 Runnable 时要使用的配置。该配置支持标准键,如用于跟踪目的的“tags”、“metadata”,用于控制并行执行多少工作的“max_concurrency”以及其他键。有关更多详细信息,请参阅 RunnableConfig。默认为 None。默认为 None。
return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。
kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。
- Yields
输入索引和来自 Runnable 的输出的元组。
- 返回类型
AsyncIterator[Tuple[int, Union[Output, Exception]]]
- async ainvoke(input: Union[str, BaseMessage], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) T ¶
ainvoke 的默认实现,从线程调用 invoke。
即使 Runnable 没有实现 invoke 的原生异步版本,默认实现也允许使用异步代码。
如果子类可以异步运行,则应重写此方法。
- 参数
input (Union[str, BaseMessage]) –
config (Optional[RunnableConfig]) –
kwargs (Optional[Any]) –
- 返回类型
T
- async aparse(text: str) T ¶
异步解析单个字符串模型输出为某种结构。
- 参数
text (str) – 语言模型的字符串输出。
- 返回
结构化输出。
- 返回类型
T
- async aparse_result(result: List[Generation], *, partial: bool = False) T ¶
异步解析候选模型 Generations 列表为特定格式。
- 返回值仅从结果中的第一个 Generation 解析,该 Generation
被假定为最高可能性的 Generation。
- 参数
result (List[Generation]) – 要解析的 Generations 列表。 Generations 被假定为单个模型输入的不同候选输出。
partial (bool) – 是否将输出解析为部分结果。这对于可以解析部分结果的解析器很有用。默认为 False。
- 返回
结构化输出。
- 返回类型
T
- as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool ¶
Beta
此 API 处于 beta 阶段,将来可能会发生变化。
从 Runnable 创建 BaseTool。
as_tool
将使用 Runnable 中的名称、描述和args_schema
实例化 BaseTool。 在可能的情况下,模式从runnable.get_input_schema
推断。 或者(例如,如果 Runnable 接受 dict 作为输入,并且未键入特定的 dict 键),可以使用args_schema
直接指定模式。 您也可以传递arg_types
以仅指定必需的参数及其类型。- 参数
args_schema (Optional[Type[BaseModel]]) – 工具的模式。默认为 None。
name (Optional[str]) – 工具的名称。默认为 None。
description (Optional[str]) – 工具的描述。默认为 None。
arg_types (Optional[Dict[str, Type]]) – 参数名称到类型的字典。默认为 None。
- 返回
BaseTool 实例。
- 返回类型
类型化 dict 输入
from typing import List from typing_extensions import TypedDict from langchain_core.runnables import RunnableLambda class Args(TypedDict): a: int b: List[int] def f(x: Args) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool() as_tool.invoke({"a": 3, "b": [1, 2]})
dict
输入,通过args_schema
指定模式from typing import Any, Dict, List from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) class FSchema(BaseModel): """Apply a function to an integer and list of integers.""" a: int = Field(..., description="Integer") b: List[int] = Field(..., description="List of ints") runnable = RunnableLambda(f) as_tool = runnable.as_tool(FSchema) as_tool.invoke({"a": 3, "b": [1, 2]})
dict
输入,通过arg_types
指定模式from typing import Any, Dict, List from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]}) as_tool.invoke({"a": 3, "b": [1, 2]})
字符串输入
from langchain_core.runnables import RunnableLambda def f(x: str) -> str: return x + "a" def g(x: str) -> str: return x + "z" runnable = RunnableLambda(f) | g as_tool = runnable.as_tool() as_tool.invoke("b")
0.2.14 版本新增。
- async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output] ¶
astream 的默认实现,它调用 ainvoke。如果子类支持流式输出,则应重写此方法。
- 参数
input (Input) – Runnable 的输入。
config (Optional[RunnableConfig]) – Runnable 要使用的配置。默认为 None。
kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。
- Yields
Runnable 的输出。
- 返回类型
AsyncIterator[Output]
- astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]] ¶
Beta
此 API 处于 beta 阶段,将来可能会发生变化。
生成事件流。
使用此方法创建一个迭代器,用于遍历 StreamEvents,这些 StreamEvents 提供关于 Runnable 进度的实时信息,包括来自中间结果的 StreamEvents。
StreamEvent 是一个具有以下模式的字典
event
: str - 事件名称的格式为格式:on_[runnable_type]_(start|stream|end)。
name
: str - 生成事件的 Runnable 的名称。run_id
: str - 随机生成的 ID,与给定 Runnable 的执行相关联,该 Runnable 发出了事件。作为父 Runnable 执行的一部分而调用的子 Runnable 将被分配自己的唯一 ID。the Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
parent_ids
: List[str] - 生成事件的父 runnables 的 ID 列表。generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
tags
: Optional[List[str]] - 生成事件的 Runnable 的标签。the event.
metadata
: Optional[Dict[str, Any]] - 生成事件的 Runnable 的元数据。that generated the event.
data
: Dict[str, Any]
下面是一个表格,说明了各种链可能发出的一些事件。为了简洁起见,表格中省略了元数据字段。链定义已包含在表格之后。
ATTENTION 此参考表适用于 V2 版本的模式。
event
name
chunk
input
output
on_chat_model_start
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[model name]
AIMessageChunk(content=”hello”)
on_chat_model_end
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=”hello world”)
on_llm_start
[model name]
{‘input’: ‘hello’}
on_llm_stream
[model name]
‘Hello’
on_llm_end
[model name]
‘Hello human!’
on_chain_start
format_docs
on_chain_stream
format_docs
“hello world!, goodbye world!”
on_chain_end
format_docs
[Document(…)]
“hello world!, goodbye world!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[retriever name]
{“query”: “hello”}
on_retriever_end
[retriever name]
{“query”: “hello”}
[Document(…), ..]
on_prompt_start
[template_name]
{“question”: “hello”}
on_prompt_end
[template_name]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
In addition to the standard events, users can also dispatch custom events (see example below).
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format
Attribute
Type
Description
name
str
A user defined name for the event.
data
Any
The data associated with the event. This can be anything, though we suggest making it JSON serializable.
Here are declarations associated with the standard events shown above
format_docs:
def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool:
@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
prompt:
template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
Example: Dispatch Custom Event
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- 参数
input (Any) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。
version (Literal['v1', 'v2']) – 要使用的模式版本,v2 或 v1。用户应使用 v2。v1 用于向后兼容,将在 0.4.0 版本中弃用。在 API 稳定之前,不会分配默认值。自定义事件仅在 v2 中显示。
include_names (Optional[Sequence[str]]) – 仅包括来自具有匹配名称的 runnables 的事件。
include_types (Optional[Sequence[str]]) – 仅包括来自具有匹配类型的 runnables 的事件。
include_tags (Optional[Sequence[str]]) – 仅包括来自具有匹配标签的 runnables 的事件。
exclude_names (Optional[Sequence[str]]) – 排除来自具有匹配名称的 runnables 的事件。
exclude_types (Optional[Sequence[str]]) – 排除来自具有匹配类型的 runnables 的事件。
exclude_tags (Optional[Sequence[str]]) – 排除来自具有匹配标签的 runnables 的事件。
kwargs (Any) – 传递给 Runnable 的其他关键字参数。这些将传递给 astream_log,因为此 astream_events 的实现构建在 astream_log 之上。
- Yields
StreamEvents 的异步流。
- Raises
NotImplementedError – 如果版本不是 v1 或 v2,则引发此错误。
- 返回类型
AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]
- batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
默认实现使用线程池执行器并行运行 invoke。
batch 的默认实现非常适合 IO 绑定的 runnables。
如果子类可以更有效地进行批处理,则应重写此方法;例如,如果底层的 Runnable 使用支持批处理模式的 API。
- 参数
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- 返回类型
List[Output]
- batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) Iterator[Tuple[int, Union[Output, Exception]]] ¶
在输入列表上并行运行 invoke,并在完成时生成结果。
- 参数
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- 返回类型
Iterator[Tuple[int, Union[Output, Exception]]]
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output] ¶
配置可在运行时设置的 Runnables 的备选项。
- 参数
which (ConfigurableField) – 将用于选择备选项的 ConfigurableField 实例。
default_key (str) – 如果未选择备选项,则使用的默认键。默认为“default”。
prefix_keys (bool) – 是否使用 ConfigurableField id 作为键的前缀。默认为 False。
**kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – 键到 Runnable 实例或返回 Runnable 实例的可调用对象的字典。
- 返回
配置了备选项的新 Runnable。
- 返回类型
RunnableSerializable[Input, Output]
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content )
- configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output] ¶
在运行时配置特定的 Runnable 字段。
- 参数
**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – 要配置的 ConfigurableField 实例的字典。
- 返回
配置了字段的新 Runnable。
- 返回类型
RunnableSerializable[Input, Output]
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content )
- get_format_instructions() str ¶
关于如何格式化 LLM 输出的说明。
- 返回类型
str
- invoke(input: Union[str, BaseMessage], config: Optional[RunnableConfig] = None) T ¶
将单个输入转换为输出。覆盖以实现。
- 参数
input (Union[str, BaseMessage]) – Runnable 的输入。
config (Optional[RunnableConfig]) – 调用 Runnable 时要使用的配置。配置支持标准键,如用于跟踪目的的“tags”、“metadata”,用于控制并行执行量的“max_concurrency”以及其他键。请参阅 RunnableConfig 了解更多详细信息。
- 返回
Runnable 的输出。
- 返回类型
T
- parse(text: str) Any [源代码]¶
将 LLM 调用的输出解析为 JSON 对象。
- 参数
text (str) – LLM 调用的输出。
- 返回
解析后的 JSON 对象。
- 返回类型
Any
- parse_result(result: List[Generation], *, partial: bool = False) Any [源代码]¶
将 LLM 调用的结果解析为 JSON 对象。
- 参数
result (List[Generation]) – LLM 调用的结果。
partial (bool) – 是否解析部分 JSON 对象。默认为 False。
- 返回
解析后的 JSON 对象。
- Raises
OutputParserException – 如果输出不是有效的 JSON,则引发此错误。
- 返回类型
Any
- parse_with_prompt(completion: str, prompt: PromptValue) Any ¶
使用输入提示作为上下文来解析 LLM 调用的输出。
提供提示主要是为了在 OutputParser 想要重试或以某种方式修复输出时,需要来自提示的信息才能这样做。
- 参数
completion (str) – 语言模型的字符串输出。
prompt (PromptValue) – 输入 PromptValue。
- 返回
结构化输出。
- 返回类型
Any
- stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) Iterator[Output] ¶
stream 的默认实现,它调用 invoke。如果子类支持流式输出,则应重写此方法。
- 参数
input (Input) – Runnable 的输入。
config (Optional[RunnableConfig]) – Runnable 要使用的配置。默认为 None。
kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。
- Yields
Runnable 的输出。
- 返回类型
Iterator[Output]
- to_json() Union[SerializedConstructor, SerializedNotImplemented] ¶
将 Runnable 序列化为 JSON。
- 返回
Runnable 的 JSON 可序列化表示形式。
- 返回类型