langchain_community.llms.textgen
.TextGen¶
注意
TextGen 实现了标准的 Runnable 接口
。 🏃
Runnable 接口
在 runnables 上有额外的方法可用,例如 with_types
, with_retry
, assign
, bind
, get_graph
, 以及更多。
- class langchain_community.llms.textgen.TextGen[source]¶
Bases:
LLM
来自 WebUI 的文本生成模型。
要使用,您应该已安装 text-generation-webui,加载模型,并将 –api 添加为命令行选项。
建议安装,为您的操作系统使用一键安装程序: https://github.com/oobabooga/text-generation-webui#one-click-installers
以下参数取自 text-generation-webui api 示例: https://github.com/oobabooga/text-generation-webui/blob/main/api-examples/api-example.py
示例
from langchain_community.llms import TextGen llm = TextGen(model_url="http://localhost:8500")
- param add_bos_token: bool = True¶
将 bos_token 添加到提示的开头。禁用此选项可以使回复更具创意性。
- param ban_eos_token: bool = False¶
禁止 eos_token。强制模型永远不要过早结束生成。
- param cache: Union[BaseCache, bool, None] = None¶
是否缓存响应。
如果为 true,将使用全局缓存。
如果为 false,将不使用缓存
如果为 None,如果已设置全局缓存,则使用全局缓存,否则不使用缓存。
如果是 BaseCache 的实例,将使用提供的缓存。
模型流式传输方法目前不支持缓存。
- param callback_manager: Optional[BaseCallbackManager] = None¶
[已弃用]
- param callbacks: Callbacks = None¶
要添加到运行跟踪的回调。
- param custom_get_token_ids: Optional[Callable[[str], List[int]]] = None¶
用于计算 token 的可选编码器。
- param do_sample: bool = True¶
进行采样
- param early_stopping: bool = False¶
提前停止
- param epsilon_cutoff: Optional[float] = 0¶
Epsilon 截断
- param eta_cutoff: Optional[float] = 0¶
ETA 截断
- param length_penalty: Optional[float] = 1¶
长度惩罚
- param max_new_tokens: Optional[int] = 250¶
要生成的最大 token 数。
- param metadata: Optional[Dict[str, Any]] = None¶
要添加到运行跟踪的元数据。
- param min_length: Optional[int] = 0¶
以 token 为单位的最小生成长度。
- param model_url: str [必需]¶
textgen webui 的完整 URL,包括 http[s]://host:port
- param no_repeat_ngram_size: Optional[int] = 0¶
如果未设置为 0,则指定完全阻止重复的 token 集的长度。值越高 = 阻止更大的短语,值越低 = 阻止单词或字母重复。在大多数情况下,只有 0 或高值才是好主意。
- param num_beams: Optional[int] = 1¶
Beam 数量
- param penalty_alpha: Optional[float] = 0¶
惩罚 Alpha 值
- param preset: Optional[str] = None¶
要在 textgen webui 中使用的预设
- param repetition_penalty: Optional[float] = 1.18¶
重复先前 token 的指数惩罚因子。1 表示无惩罚,值越高 = 重复越少,值越低 = 重复越多。
- param seed: int = -1¶
种子(-1 表示随机)
- param skip_special_tokens: bool = True¶
跳过特殊 token。某些特定模型需要取消设置此项。
- param stopping_strings: Optional[List[str]] = []¶
遇到时停止生成的字符串列表。
- param streaming: bool = False¶
是否逐个 token 流式传输结果。
- param tags: Optional[List[str]] = None¶
要添加到运行跟踪的标签。
- param temperature: Optional[float] = 1.3¶
控制输出随机性的主要因素。0 = 确定性(仅使用最可能的 token)。值越高 = 随机性越高。
- param top_k: Optional[float] = 40¶
类似于 top_p,但改为仅选择前 k 个最可能的 token。值越高 = 可能的随机结果范围越高。
- param top_p: Optional[float] = 0.1¶
如果未设置为 1,则选择概率总和小于此数字的 token。值越高 = 可能的随机结果范围越高。
- param truncation_length: Optional[int] = 2048¶
将提示截断为此长度。如果提示超过此长度,则删除最左侧的 token。大多数模型要求此值最多为 2048。
- param typical_p: Optional[float] = 1¶
如果未设置为 1,则仅选择那些根据先前的文本,至少比随机 token 更可能出现的 token。
- param verbose: bool [可选]¶
是否打印输出响应文本。
- __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler],BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) str ¶
Deprecated since version langchain-core==0.1.7: Use
invoke
instead.检查缓存并在给定提示和输入上运行 LLM。
- 参数
prompt (str) – 要从中生成的提示。
stop (Optional[List[str]]) – 生成时要使用的停止词。模型输出在首次出现任何这些子字符串时被截断。
callbacks (可选[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 传递的回调函数。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。
tags (可选[List[str]]) – 与提示关联的标签列表。
metadata (可选[Dict[str, Any]]) – 与提示关联的元数据。
**kwargs (Any) – 任意附加的关键字参数。这些参数通常传递给模型提供商 API 调用。
- 返回值
生成的文本。
- Raises
ValueError – 如果提示不是字符串。
- 返回类型
str
- async abatch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List,RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) List[str] ¶
默认实现使用 asyncio.gather 并行运行 ainvoke。
batch 的默认实现对于 IO 密集型 runnable 效果良好。
如果子类可以更有效地进行批处理,则应覆盖此方法;例如,如果底层 Runnable 使用支持批处理模式的 API。
- 参数
inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]]) – Runnable 的输入列表。
config (可选[Union[RunnableConfig, List[RunnableConfig]]]) – 调用 Runnable 时使用的配置。该配置支持标准键,如用于跟踪目的的“tags”、“metadata”,用于控制并行执行量的“max_concurrency”以及其他键。请参阅 RunnableConfig 了解更多详情。默认为 None。
return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。
kwargs (Any) – 传递给 Runnable 的其他关键字参数。
- 返回值
Runnable 的输出列表。
- 返回类型
List[str]
- async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]] ¶
并行运行列表中输入的 ainvoke,并在结果完成时产生结果。
- 参数
inputs (Sequence[Input]) – Runnable 的输入列表。
config (可选[Union[RunnableConfig, Sequence[RunnableConfig]]]) – 调用 Runnable 时使用的配置。该配置支持标准键,如用于跟踪目的的“tags”、“metadata”,用于控制并行执行量的“max_concurrency”以及其他键。请参阅 RunnableConfig 了解更多详情。默认为 None。默认为 None。
return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。
kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。
- Yields
输入索引和来自 Runnable 的输出的元组。
- 返回类型
AsyncIterator[Tuple[int, Union[Output, Exception]]]
- async agenerate(prompts: List[str], stop: Optional[List,str]] = None, callbacks: Union[List,BaseCallbackHandler], BaseCallbackManager, None, List,Optional,Union,List,BaseCallbackHandler]], BaseCallbackManager]]]] = None, *, tags: Optional[Union,List,str], List,List,str]]]] = None, metadata: Optional[Union,Dict,str, Any], List,Dict,str, Any]]]] = None, run_name: Optional[Union,str, List,str]]] = None, run_id: Optional[Union,UUID, List,Optional,UUID]]]] = None, **kwargs: Any) LLMResult ¶
异步传递一系列提示给模型并返回生成结果。
此方法应利用为公开批处理 API 的模型进行的批处理调用。
- 当您想要以下操作时,请使用此方法:
利用批处理调用,
需要比模型生成的最佳值更多的输出,
- 正在构建与底层语言模型无关的链
类型(例如,纯文本补全模型与聊天模型)。
- 参数
prompts (List[str]) – 字符串提示列表。
stop (Optional[List[str]]) – 生成时要使用的停止词。模型输出在首次出现任何这些子字符串时被截断。
callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – 传递的回调函数。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。
tags (可选[Union[List[str], List[List[str]]]]) – 与每个提示关联的标签列表。如果提供,则列表的长度必须与提示列表的长度匹配。
metadata (可选[Union[Dict[str, Any], List[Dict[str, Any]]]]) – 与每个提示关联的元数据字典列表。如果提供,则列表的长度必须与提示列表的长度匹配。
run_name (可选[Union[str, List[str]]]) – 与每个提示关联的运行名称列表。如果提供,则列表的长度必须与提示列表的长度匹配。
run_id (可选[Union[UUID, List[Optional[UUID]]]]) – 与每个提示关联的运行 ID 列表。如果提供,则列表的长度必须与提示列表的长度匹配。
**kwargs (Any) – 任意附加的关键字参数。这些参数通常传递给模型提供商 API 调用。
- 返回值
- 一个 LLMResult,其中包含每个输入
提示和附加的模型提供商特定输出的候选 Generations 列表。
- 返回类型
- async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List,str]] = None, callbacks: Union[List,BaseCallbackHandler], BaseCallbackManager, None, List,Optional,Union,List,BaseCallbackHandler]], BaseCallbackManager]]]] = None, **kwargs: Any) LLMResult ¶
异步传递一系列提示并返回模型生成结果。
此方法应利用为公开批处理 API 的模型进行的批处理调用。
- 当您想要以下操作时,请使用此方法:
利用批处理调用,
需要比模型生成的最佳值更多的输出,
- 正在构建与底层语言模型无关的链
类型(例如,纯文本补全模型与聊天模型)。
- 参数
prompts (List[PromptValue]) – PromptValue 列表。PromptValue 是一个可以转换为匹配任何语言模型格式的对象(纯文本生成模型的字符串,以及聊天模型的 BaseMessages)。
stop (Optional[List[str]]) – 生成时要使用的停止词。模型输出在首次出现任何这些子字符串时被截断。
callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – 传递的回调函数。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。
**kwargs (Any) – 任意附加的关键字参数。这些参数通常传递给模型提供商 API 调用。
- 返回值
- 一个 LLMResult,其中包含每个输入
提示和附加的模型提供商特定输出的候选 Generations 列表。
- 返回类型
- async ainvoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List,str], Tuple,str, str], str, Dict,str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List,str]] = None, **kwargs: Any) str ¶
ainvoke 的默认实现,从线程调用 invoke。
即使 Runnable 没有实现 invoke 的原生异步版本,默认实现也允许使用异步代码。
如果子类可以异步运行,则应覆盖此方法。
- 参数
input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) –
config (Optional[RunnableConfig]) –
stop (Optional[List[str]]) –
kwargs (Any) –
- 返回类型
str
- async apredict(text: str, *, stop: Optional[Sequence,str]] = None, **kwargs: Any) str ¶
Deprecated since version langchain-core==0.1.7: 请使用
ainvoke
代替。- 参数
text (str) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- 返回类型
str
- async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence,str]] = None, **kwargs: Any) BaseMessage ¶
Deprecated since version langchain-core==0.1.7: 请使用
ainvoke
代替。- 参数
messages (List[BaseMessage]) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- 返回类型
- as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool ¶
Beta
此 API 处于 beta 阶段,未来可能会发生变化。
从 Runnable 创建一个 BaseTool。
as_tool
将从 Runnable 实例化一个具有名称、描述和args_schema
的 BaseTool。在可能的情况下,模式会从runnable.get_input_schema
推断。或者(例如,如果 Runnable 接受 dict 作为输入,并且未键入特定的 dict 键),则可以直接使用args_schema
指定模式。您还可以传递arg_types
以仅指定必需的参数及其类型。- 参数
args_schema (Optional[Type[BaseModel]]) – 工具的模式。默认为 None。
name (Optional[str]) – 工具的名称。默认为 None。
description (Optional[str]) – 工具的描述。默认为 None。
arg_types (Optional[Dict[str, Type]]) – 参数名称到类型的字典。默认为 None。
- 返回值
一个 BaseTool 实例。
- 返回类型
类型化的字典输入
from typing import List from typing_extensions import TypedDict from langchain_core.runnables import RunnableLambda class Args(TypedDict): a: int b: List[int] def f(x: Args) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool() as_tool.invoke({"a": 3, "b": [1, 2]})
dict
输入,通过args_schema
指定模式from typing import Any, Dict, List from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) class FSchema(BaseModel): """Apply a function to an integer and list of integers.""" a: int = Field(..., description="Integer") b: List[int] = Field(..., description="List of ints") runnable = RunnableLambda(f) as_tool = runnable.as_tool(FSchema) as_tool.invoke({"a": 3, "b": [1, 2]})
dict
输入,通过arg_types
指定模式from typing import Any, Dict, List from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]}) as_tool.invoke({"a": 3, "b": [1, 2]})
字符串输入
from langchain_core.runnables import RunnableLambda def f(x: str) -> str: return x + "a" def g(x: str) -> str: return x + "z" runnable = RunnableLambda(f) | g as_tool = runnable.as_tool() as_tool.invoke("b")
0.2.14 版本新增功能。
- async astream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List] = None, **kwargs: Any) AsyncIterator[str] ¶
astream 的默认实现,它调用 ainvoke。如果子类支持流式输出,则应覆盖此方法。
- 参数
input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。
kwargs (Any) – 传递给 Runnable 的其他关键字参数。
stop (Optional[List[str]]) –
- Yields
Runnable 的输出。
- 返回类型
AsyncIterator[str]
- astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]] ¶
Beta
此 API 处于 beta 阶段,未来可能会发生变化。
生成事件流。
用于创建 StreamEvents 的迭代器,该迭代器提供有关 Runnable 进度的实时信息,包括来自中间结果的 StreamEvents。
StreamEvent 是一个具有以下模式的字典
event
: str - 事件名称的格式为:格式:on_[runnable_type]_(start|stream|end)。
name
: str - 生成事件的 Runnable 的名称。run_id
: str - 随机生成的 ID,与给定 Runnable 执行相关联,该 Runnable 发出事件。作为父 Runnable 执行一部分调用的子 Runnable 会被分配自己的唯一 ID。Runnable 的执行,该 Runnable 发出事件。作为父 Runnable 执行一部分调用的子 Runnable 会被分配自己的唯一 ID。
parent_ids
: List[str] - 生成事件的父 runnables 的 ID。根 Runnable 将具有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。生成事件的父 runnables 的 ID。根 Runnable 将具有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。
tags
: Optional[List[str]] - 生成事件的 Runnable 的标签。生成事件的 Runnable 的标签。
metadata
: Optional[Dict[str, Any]] - 生成事件的 Runnable 的元数据。生成事件的 Runnable 的元数据。
data
: Dict[str, Any]
下面是一个表格,说明了各种链可能发出的一些事件。为了简洁起见,元数据字段已从表格中省略。链定义已包含在表格之后。
注意 此参考表适用于模式的 V2 版本。
event
name
chunk
input
output
on_chat_model_start
[模型名称]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[模型名称]
AIMessageChunk(content=”hello”)
on_chat_model_end
[模型名称]
{“messages”: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=”hello world”)
on_llm_start
[模型名称]
{‘input’: ‘hello’}
on_llm_stream
[模型名称]
‘Hello’
on_llm_end
[模型名称]
‘Hello human!’
on_chain_start
format_docs
on_chain_stream
format_docs
“hello world!, goodbye world!”
on_chain_end
format_docs
[Document(…)]
“hello world!, goodbye world!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[检索器名称]
{“query”: “hello”}
on_retriever_end
[检索器名称]
{“query”: “hello”}
[Document(…), ..]
on_prompt_start
[模板名称]
{“question”: “hello”}
on_prompt_end
[模板名称]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
除了标准事件外,用户还可以调度自定义事件(请参阅下面的示例)。
自定义事件将仅在 API 的 v2 版本中显示!
自定义事件具有以下格式
属性
类型
描述
name
str
用户为事件定义的名称。
data
Any
与事件关联的数据。这可以是任何内容,但我们建议使其可 JSON 序列化。
以下是与上面显示的标准事件关联的声明
format_docs:
def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool:
@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
prompt:
template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
示例
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
示例:调度自定义事件
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- 参数
input (Any) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。
version (Literal['v1', 'v2']) – 要使用的模式版本,v2 或 v1。用户应使用 v2。v1 用于向后兼容,将在 0.4.0 中弃用。在 API 稳定之前,不会分配默认值。自定义事件将仅在 v2 中显示。
include_names (Optional[Sequence[str]]) – 仅包括来自具有匹配名称的 runnables 的事件。
include_types (Optional[Sequence[str]]) – 仅包括来自具有匹配类型的 runnables 的事件。
include_tags (Optional[Sequence[str]]) – 仅包括来自具有匹配标签的 runnables 的事件。
exclude_names (Optional[Sequence[str]]) – 排除来自具有匹配名称的 runnables 的事件。
exclude_types (Optional[Sequence[str]]) – 排除来自具有匹配类型的 runnables 的事件。
exclude_tags (Optional[Sequence[str]]) – 排除来自具有匹配标签的 runnables 的事件。
kwargs (Any) – 要传递给 Runnable 的其他关键字参数。这些将传递给 astream_log,因为此 astream_events 的实现构建在 astream_log 之上。
- Yields
StreamEvents 的异步流。
- Raises
NotImplementedError – 如果版本不是 v1 或 v2。
- 返回类型
AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]
- batch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, List]]], config: Optional[Union[RunnableConfig, List]]] = None, *, return_exceptions: bool = False, **kwargs: Any) List[str] ¶
默认实现使用线程池执行器并行运行 invoke。
batch 的默认实现对于 IO 密集型 runnable 效果良好。
如果子类可以更有效地进行批处理,则应覆盖此方法;例如,如果底层 Runnable 使用支持批处理模式的 API。
- 参数
inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Any) –
- 返回类型
List[str]
- batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) Iterator[Tuple[int, Union[Output, Exception]]] ¶
并行运行列表中输入的 invoke,并在完成时产生结果。
- 参数
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- 返回类型
Iterator[Tuple[int, Union[Output, Exception]]]
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output] ¶
配置可在运行时设置的 Runnables 的备选项。
- 参数
which (ConfigurableField) – 将用于选择备选项的 ConfigurableField 实例。
default_key (str) – 如果未选择任何备选项,则使用的默认键。默认为“default”。
prefix_keys (bool) – 是否使用 ConfigurableField id 作为键的前缀。默认为 False。
**kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – 键到 Runnable 实例或返回 Runnable 实例的可调用对象的字典。
- 返回值
配置了备选项的新 Runnable。
- 返回类型
RunnableSerializable[Input, Output]
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content )
- configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output] ¶
在运行时配置特定的 Runnable 字段。
- 参数
**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – 要配置的 ConfigurableField 实例的字典。
- 返回值
配置了字段的新 Runnable。
- 返回类型
RunnableSerializable[Input, Output]
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content )
- generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) LLMResult ¶
将一系列提示传递给模型并返回生成结果。
此方法应利用为公开批处理 API 的模型进行的批处理调用。
- 当您想要以下操作时,请使用此方法:
利用批处理调用,
需要比模型生成的最佳值更多的输出,
- 正在构建与底层语言模型无关的链
类型(例如,纯文本补全模型与聊天模型)。
- 参数
prompts (List[str]) – 字符串提示列表。
stop (Optional[List[str]]) – 生成时要使用的停止词。模型输出在首次出现任何这些子字符串时被截断。
callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – 传递的回调函数。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。
tags (可选[Union[List[str], List[List[str]]]]) – 与每个提示关联的标签列表。如果提供,则列表的长度必须与提示列表的长度匹配。
metadata (可选[Union[Dict[str, Any], List[Dict[str, Any]]]]) – 与每个提示关联的元数据字典列表。如果提供,则列表的长度必须与提示列表的长度匹配。
run_name (可选[Union[str, List[str]]]) – 与每个提示关联的运行名称列表。如果提供,则列表的长度必须与提示列表的长度匹配。
run_id (可选[Union[UUID, List[Optional[UUID]]]]) – 与每个提示关联的运行 ID 列表。如果提供,则列表的长度必须与提示列表的长度匹配。
**kwargs (Any) – 任意附加的关键字参数。这些参数通常传递给模型提供商 API 调用。
- 返回值
- 一个 LLMResult,其中包含每个输入
提示和附加的模型提供商特定输出的候选 Generations 列表。
- 返回类型
- generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) LLMResult ¶
将一系列提示传递给模型并返回模型生成结果。
此方法应利用为公开批处理 API 的模型进行的批处理调用。
- 当您想要以下操作时,请使用此方法:
利用批处理调用,
需要比模型生成的最佳值更多的输出,
- 正在构建与底层语言模型无关的链
类型(例如,纯文本补全模型与聊天模型)。
- 参数
prompts (List[PromptValue]) – PromptValue 列表。PromptValue 是一个可以转换为匹配任何语言模型格式的对象(纯文本生成模型的字符串,以及聊天模型的 BaseMessages)。
stop (Optional[List[str]]) – 生成时要使用的停止词。模型输出在首次出现任何这些子字符串时被截断。
callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – 传递的回调函数。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。
**kwargs (Any) – 任意附加的关键字参数。这些参数通常传递给模型提供商 API 调用。
- 返回值
- 一个 LLMResult,其中包含每个输入
提示和附加的模型提供商特定输出的候选 Generations 列表。
- 返回类型
- get_num_tokens(text: str) int ¶
获取文本中存在的 tokens 数量。
用于检查输入是否适合模型的上下文窗口。
- 参数
text (str) – 要进行 token 化的字符串输入。
- 返回值
文本中 tokens 的整数数量。
- 返回类型
int
- get_num_tokens_from_messages(messages: List[BaseMessage]) int ¶
获取消息中的 tokens 数量。
用于检查输入是否适合模型的上下文窗口。
- 参数
messages (List[BaseMessage]) – 要进行 token 化的消息输入。
- 返回值
消息中所有 tokens 数量的总和。
- 返回类型
int
- get_token_ids(text: str) List[int] ¶
返回文本中 tokens 的有序 ID。
- 参数
text (str) – 要进行 token 化的字符串输入。
- 返回值
- 与文本中 tokens 对应的 ID 列表,按它们在文本中出现的顺序排列。
在文本中。
- 返回类型
List[int]
- invoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) str ¶
将单个输入转换为输出。重写以实现。
- 参数
input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) – Runnable 的输入。
config (Optional[RunnableConfig]) – 调用 Runnable 时使用的配置。该配置支持标准键,如用于跟踪目的的“tags”和“metadata”,用于控制并行执行多少工作的“max_concurrency”以及其他键。请参阅 RunnableConfig 以获取更多详细信息。
stop (Optional[List[str]]) –
kwargs (Any) –
- 返回值
Runnable 的输出。
- 返回类型
str
- predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str ¶
Deprecated since version langchain-core==0.1.7: Use
invoke
instead.- 参数
text (str) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- 返回类型
str
- predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage ¶
Deprecated since version langchain-core==0.1.7: Use
invoke
instead.- 参数
messages (List[BaseMessage]) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- 返回类型
- save(file_path: Union[Path, str]) None ¶
保存 LLM。
- 参数
file_path (Union[Path, str]) – 保存 LLM 的文件路径。
- Raises
ValueError – 如果文件路径不是字符串或 Path 对象。
- 返回类型
None
Example: .. code-block:: python
llm.save(file_path=”path/llm.yaml”)
- stream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) Iterator[str] ¶
流式处理的默认实现,它调用 invoke。如果子类支持流式输出,则应重写此方法。
- 参数
input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。
kwargs (Any) – 传递给 Runnable 的其他关键字参数。
stop (Optional[List[str]]) –
- Yields
Runnable 的输出。
- 返回类型
Iterator[str]
- to_json() Union[SerializedConstructor, SerializedNotImplemented] ¶
将 Runnable 序列化为 JSON。
- 返回值
Runnable 的 JSON 可序列化表示。
- 返回类型
- with_structured_output(schema: Union[Dict, Type[BaseModel]], **kwargs: Any) Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]] ¶
在此类中未实现。
- 参数
schema (Union[Dict, Type[BaseModel]]) –
kwargs (Any) –
- 返回类型
Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]