langchain_community.llms.textgen.TextGen

Note

TextGen implements the standard Runnable Interface. 🏃

The Runnable Interface has additional methods that are available on runnables, such as with_types, with_retry, assign, bind, get_graph, and more.

class langchain_community.llms.textgen.TextGen[source]

Bases: LLM

Text generation models from WebUI.

To use, you should have the text-generation-webui installed, a model loaded, and –api added as a command-line option.

Suggested installation, use one-click installer for your OS: https://github.com/oobabooga/text-generation-webui#one-click-installers

Parameters below taken from text-generation-webui api example: https://github.com/oobabooga/text-generation-webui/blob/main/api-examples/api-example.py

Example

from langchain_community.llms import TextGen
llm = TextGen(model_url="https://127.0.0.1:8500")
param add_bos_token: bool = True

Add the bos_token to the beginning of prompts. Disabling this can make the replies more creative.

param ban_eos_token: bool = False

Ban the eos_token. Forces the model to never end the generation prematurely.

param cache: Union[BaseCache, bool, None] = None

Whether to cache the response.

  • If true, will use the global cache.

  • If false, will not use a cache

  • If None, will use the global cache if it’s set, otherwise no cache.

  • If instance of BaseCache, will use the provided cache.

Caching is not currently supported for streaming methods of models.

param callback_manager: Optional[BaseCallbackManager] = None

[DEPRECATED]

param callbacks: Callbacks = None

Callbacks to add to the run trace.

param custom_get_token_ids: Optional[Callable[[str], List[int]]] = None

Optional encoder to use for counting tokens.

param do_sample: bool = True

Do sample

param early_stopping: bool = False

Early stopping

param epsilon_cutoff: Optional[float] = 0

Epsilon cutoff

param eta_cutoff: Optional[float] = 0

ETA cutoff

param length_penalty: Optional[float] = 1

Length Penalty

param max_new_tokens: Optional[int] = 250

The maximum number of tokens to generate.

param metadata: Optional[Dict[str, Any]] = None

Metadata to add to the run trace.

param min_length: Optional[int] = 0

Minimum generation length in tokens.

param model_url: str [Required]

The full URL to the textgen webui including http[s]://host:port

param no_repeat_ngram_size: Optional[int] = 0

If not set to 0, specifies the length of token sets that are completely blocked from repeating at all. Higher values = blocks larger phrases, lower values = blocks words or letters from repeating. Only 0 or high values are a good idea in most cases.

param num_beams: Optional[int] = 1

Number of beams

param penalty_alpha: Optional[float] = 0

Penalty Alpha

param preset: Optional[str] = None

The preset to use in the textgen webui

param repetition_penalty: Optional[float] = 1.18

Exponential penalty factor for repeating prior tokens. 1 means no penalty, higher value = less repetition, lower value = more repetition.

param seed: int = -1

Seed (-1 for random)

param skip_special_tokens: bool = True

Skip special tokens. Some specific models need this unset.

param stopping_strings: Optional[List[str]] = []

A list of strings to stop generation when encountered.

param streaming: bool = False

Whether to stream the results, token by token.

param tags: Optional[List[str]] = None

Tags to add to the run trace.

param temperature: Optional[float] = 1.3

Primary factor to control randomness of outputs. 0 = deterministic (only the most likely token is used). Higher value = more randomness.

param top_k: Optional[float] = 40

Similar to top_p, but select instead only the top_k most likely tokens. Higher value = higher range of possible random results.

param top_p: Optional[float] = 0.1

If not set to 1, select tokens with probabilities adding up to less than this number. Higher value = higher range of possible random results.

param truncation_length: Optional[int] = 2048

Truncate the prompt up to this length. The leftmost tokens are removed if the prompt exceeds this length. Most models require this to be at most 2048.

param typical_p: Optional[float] = 1

If not set to 1, select only tokens that are at least this much more likely to appear than random tokens, given the prior text.

param verbose: bool [Optional]

Whether to print out response text.

__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) str

Deprecated since version langchain-core==0.1.7: Use invoke instead.

Check Cache and run the LLM on the given prompt and input.

Parameters
  • prompt (str) – The prompt to generate from.

  • stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.

  • callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.

  • tags (Optional[List[str]]) – List of tags to associate with the prompt.

  • metadata (Optional[Dict[str, Any]]) – Metadata to associate with the prompt.

  • **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call.

Returns

The generated text.

Raises

ValueError – If the prompt is not a string.

Return type

str

async abatch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) List[str]

Default implementation runs ainvoke in parallel using asyncio.gather.

The default implementation of batch works well for IO bound runnables.

Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

Parameters
  • inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]]) – A list of inputs to the Runnable.

  • config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – A config to use when invoking the Runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.

  • return_exceptions (bool) – Whether to return exceptions instead of raising them. Defaults to False.

  • kwargs (Any) – Additional keyword arguments to pass to the Runnable.

Returns

A list of outputs from the Runnable.

Return type

List[str]

async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]]

Run ainvoke in parallel on a list of inputs, yielding results as they complete.

Parameters
  • inputs (Sequence[Input]) – A list of inputs to the Runnable.

  • config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – A config to use when invoking the Runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None. Defaults to None.

  • return_exceptions (bool) – Whether to return exceptions instead of raising them. Defaults to False.

  • kwargs (Optional[Any]) – Additional keyword arguments to pass to the Runnable.

Yields

A tuple of the index of the input and the output from the Runnable.

Return type

AsyncIterator[Tuple[int, Union[Output, Exception]]]

async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) LLMResult

Asynchronously pass a sequence of prompts to a model and return generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:
  1. take advantage of batched calls,

  2. need more output from the model than just the top generated value,

  3. are building chains that are agnostic to the underlying language model

    type (e.g., pure text completion models vs chat models).

Parameters
  • prompts (List[str]) – List of string prompts.

  • stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.

  • callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.

  • tags (Optional[Union[List[str], List[List[str]]]]) – List of tags to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

  • metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – List of metadata dictionaries to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

  • run_name (Optional[Union[str, List[str]]]) – List of run names to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

  • run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – List of run IDs to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

  • **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call.

Returns

An LLMResult, which contains a list of candidate Generations for each input

prompt and additional model provider-specific output.

Return type

LLMResult

async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) LLMResult

Asynchronously pass a sequence of prompts and return model generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:
  1. take advantage of batched calls,

  2. need more output from the model than just the top generated value,

  3. are building chains that are agnostic to the underlying language model

    type (e.g., pure text completion models vs chat models).

Parameters
  • prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models).

  • stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.

  • callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.

  • **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call.

Returns

An LLMResult, which contains a list of candidate Generations for each input

prompt and additional model provider-specific output.

Return type

LLMResult

async ainvoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) str

Default implementation of ainvoke, calls invoke from a thread.

The default implementation allows usage of async code even if the Runnable did not implement a native async version of invoke.

Subclasses should override this method if they can run asynchronously.

Parameters
  • input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) –

  • config (Optional[RunnableConfig]) –

  • stop (Optional[List[str]]) –

  • kwargs (Any) –

Return type

str

async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str

Deprecated since version langchain-core==0.1.7: Use ainvoke instead.

Parameters
  • text (str) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

Return type

str

async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage

Deprecated since version langchain-core==0.1.7: Use ainvoke instead.

Parameters
  • messages (List[BaseMessage]) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

Return type

BaseMessage

as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool

Beta

This API is in beta and may change in the future.

Create a BaseTool from a Runnable.

as_tool will instantiate a BaseTool with a name, description, and args_schema from a Runnable. Where possible, schemas are inferred from runnable.get_input_schema. Alternatively (e.g., if the Runnable takes a dict as input and the specific dict keys are not typed), the schema can be specified directly with args_schema. You can also pass arg_types to just specify the required arguments and their types.

Parameters
  • args_schema (Optional[Type[BaseModel]]) – The schema for the tool. Defaults to None.

  • name (Optional[str]) – The name of the tool. Defaults to None.

  • description (Optional[str]) – The description of the tool. Defaults to None.

  • arg_types (Optional[Dict[str, Type]]) – A dictionary of argument names to types. Defaults to None.

Returns

A BaseTool instance.

Return type

BaseTool

Typed dict input:

from typing import List
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda

class Args(TypedDict):
    a: int
    b: List[int]

def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))

runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via args_schema:

from typing import Any, Dict, List
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: Dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: List[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

dict input, specifying schema via arg_types:

from typing import Any, Dict, List
from langchain_core.runnables import RunnableLambda

def f(x: Dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

String input:

from langchain_core.runnables import RunnableLambda

def f(x: str) -> str:
    return x + "a"

def g(x: str) -> str:
    return x + "z"

runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

New in version 0.2.14.

async astream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) AsyncIterator[str]

Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.

Parameters
  • input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) – The input to the Runnable.

  • config (Optional[RunnableConfig]) – The config to use for the Runnable. Defaults to None.

  • kwargs (Any) – Additional keyword arguments to pass to the Runnable.

  • stop (Optional[List[str]]) –

Yields

The output of the Runnable.

Return type

AsyncIterator[str]

astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]

Beta

This API is in beta and may change in the future.

Generate a stream of events.

Use to create an iterator over StreamEvents that provide real-time information about the progress of the Runnable, including StreamEvents from intermediate results.

A StreamEvent is a dictionary with the following schema:

  • event: str - Event names are of the

    format: on_[runnable_type]_(start|stream|end).

  • name: str - The name of the Runnable that generated the event.

  • run_id: str - randomly generated ID associated with the given execution of

    the Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.

  • parent_ids: List[str] - The IDs of the parent runnables that

    generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.

  • tags: Optional[List[str]] - The tags of the Runnable that generated

    the event.

  • metadata: Optional[Dict[str, Any]] - The metadata of the Runnable

    that generated the event.

  • data: Dict[str, Any]

Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

ATTENTION This reference table is for the V2 version of the schema.

event

name

chunk

input

output

on_chat_model_start

[model name]

{“messages”: [[SystemMessage, HumanMessage]]}

on_chat_model_stream

[model name]

AIMessageChunk(content=”hello”)

on_chat_model_end

[model name]

{“messages”: [[SystemMessage, HumanMessage]]}

AIMessageChunk(content=”hello world”)

on_llm_start

[model name]

{‘input’: ‘hello’}

on_llm_stream

[model name]

‘Hello’

on_llm_end

[model name]

‘Hello human!’

on_chain_start

format_docs

on_chain_stream

format_docs

“hello world!, goodbye world!”

on_chain_end

format_docs

[Document(…)]

“hello world!, goodbye world!”

on_tool_start

some_tool

{“x”: 1, “y”: “2”}

on_tool_end

some_tool

{“x”: 1, “y”: “2”}

on_retriever_start

[retriever name]

{“query”: “hello”}

on_retriever_end

[retriever name]

{“query”: “hello”}

[Document(…), ..]

on_prompt_start

[template_name]

{“question”: “hello”}

on_prompt_end

[template_name]

{“question”: “hello”}

ChatPromptValue(messages: [SystemMessage, …])

In addition to the standard events, users can also dispatch custom events (see example below).

Custom events will be only be surfaced with in the v2 version of the API!

A custom event has following format:

Attribute

Type

Description

name

str

A user defined name for the event.

data

Any

The data associated with the event. This can be anything, though we suggest making it JSON serializable.

Here are declarations associated with the standard events shown above:

format_docs:

def format_docs(docs: List[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])

format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

prompt:

template = ChatPromptTemplate.from_messages(
    [("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})

Example:

from langchain_core.runnables import RunnableLambda

async def reverse(s: str) -> str:
    return s[::-1]

chain = RunnableLambda(func=reverse)

events = [
    event async for event in chain.astream_events("hello", version="v2")
]

# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]

Example: Dispatch Custom Event

from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)
Parameters
  • input (Any) – The input to the Runnable.

  • config (Optional[RunnableConfig]) – The config to use for the Runnable.

  • version (Literal['v1', 'v2']) – The version of the schema to use either v2 or v1. Users should use v2. v1 is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in v2.

  • include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names.

  • include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types.

  • include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags.

  • exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names.

  • exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types.

  • exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags.

  • kwargs (Any) – Additional keyword arguments to pass to the Runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.

Yields

An async stream of StreamEvents.

Raises

NotImplementedError – If the version is not v1 or v2.

Return type

AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]

batch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) List[str]

Default implementation runs invoke in parallel using a thread pool executor.

The default implementation of batch works well for IO bound runnables.

Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.

Parameters
Return type

List[str]

batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) Iterator[Tuple[int, Union[Output, Exception]]]

Run invoke in parallel on a list of inputs, yielding results as they complete.

Parameters
  • inputs (Sequence[Input]) –

  • config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –

  • return_exceptions (bool) –

  • kwargs (Optional[Any]) –

Return type

Iterator[Tuple[int, Union[Output, Exception]]]

configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output]

Configure alternatives for Runnables that can be set at runtime.

Parameters
  • which (ConfigurableField) – The ConfigurableField instance that will be used to select the alternative.

  • default_key (str) – The default key to use if no alternative is selected. Defaults to “default”.

  • prefix_keys (bool) – Whether to prefix the keys with the ConfigurableField id. Defaults to False.

  • **kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – A dictionary of keys to Runnable instances or callables that return Runnable instances.

Returns

A new Runnable with the alternatives configured.

Return type

RunnableSerializable[Input, Output]

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-3-sonnet-20240229"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI()
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(
        configurable={"llm": "openai"}
    ).invoke("which organization created you?").content
)
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output]

Configure particular Runnable fields at runtime.

Parameters

**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – A dictionary of ConfigurableField instances to configure.

Returns

A new Runnable with the fields configured.

Return type

RunnableSerializable[Input, Output]

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print(
    "max_tokens_20: ",
    model.invoke("tell me something about chess").content
)

# max_tokens = 200
print("max_tokens_200: ", model.with_config(
    configurable={"output_token_number": 200}
    ).invoke("tell me something about chess").content
)
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) LLMResult

Pass a sequence of prompts to a model and return generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:
  1. take advantage of batched calls,

  2. need more output from the model than just the top generated value,

  3. are building chains that are agnostic to the underlying language model

    type (e.g., pure text completion models vs chat models).

Parameters
  • prompts (List[str]) – List of string prompts.

  • stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.

  • callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.

  • tags (Optional[Union[List[str], List[List[str]]]]) – List of tags to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

  • metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – List of metadata dictionaries to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

  • run_name (Optional[Union[str, List[str]]]) – List of run names to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

  • run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – List of run IDs to associate with each prompt. If provided, the length of the list must match the length of the prompts list.

  • **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call.

Returns

An LLMResult, which contains a list of candidate Generations for each input

prompt and additional model provider-specific output.

Return type

LLMResult

generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) LLMResult

Pass a sequence of prompts to the model and return model generations.

This method should make use of batched calls for models that expose a batched API.

Use this method when you want to:
  1. take advantage of batched calls,

  2. need more output from the model than just the top generated value,

  3. are building chains that are agnostic to the underlying language model

    type (e.g., pure text completion models vs chat models).

Parameters
  • prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models).

  • stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.

  • callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.

  • **kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call.

Returns

An LLMResult, which contains a list of candidate Generations for each input

prompt and additional model provider-specific output.

Return type

LLMResult

get_num_tokens(text: str) int

Get the number of tokens present in the text.

Useful for checking if an input fits in a model’s context window.

Parameters

text (str) – The string input to tokenize.

Returns

The integer number of tokens in the text.

Return type

int

get_num_tokens_from_messages(messages: List[BaseMessage]) int

Get the number of tokens in the messages.

Useful for checking if an input fits in a model’s context window.

Parameters

messages (List[BaseMessage]) – The message inputs to tokenize.

Returns

The sum of the number of tokens across the messages.

Return type

int

get_token_ids(text: str) List[int]

Return the ordered ids of the tokens in a text.

Parameters

text (str) – The string input to tokenize.

Returns

A list of ids corresponding to the tokens in the text, in order they occur

in the text.

Return type

List[int]

invoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) str

Transform a single input into an output. Override to implement.

Parameters
  • input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) – The input to the Runnable.

  • config (Optional[RunnableConfig]) – A config to use when invoking the Runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.

  • stop (Optional[List[str]]) –

  • kwargs (Any) –

Returns

The output of the Runnable.

Return type

str

predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str

Deprecated since version langchain-core==0.1.7: Use invoke instead.

Parameters
  • text (str) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

Return type

str

predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage

Deprecated since version langchain-core==0.1.7: Use invoke instead.

Parameters
  • messages (List[BaseMessage]) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

Return type

BaseMessage

save(file_path: Union[Path, str]) None

Save the LLM.

Parameters

file_path (Union[Path, str]) – Path to file to save the LLM to.

Raises

ValueError – If the file path is not a string or Path object.

Return type

None

Example: .. code-block:: python

llm.save(file_path=”path/llm.yaml”)

stream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) Iterator[str]

Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output.

Parameters
  • input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) – The input to the Runnable.

  • config (Optional[RunnableConfig]) – The config to use for the Runnable. Defaults to None.

  • kwargs (Any) – Additional keyword arguments to pass to the Runnable.

  • stop (Optional[List[str]]) –

Yields

The output of the Runnable.

Return type

Iterator[str]

to_json() Union[SerializedConstructor, SerializedNotImplemented]

Serialize the Runnable to JSON.

Returns

A JSON-serializable representation of the Runnable.

Return type

Union[SerializedConstructor, SerializedNotImplemented]

with_structured_output(schema: Union[Dict, Type[BaseModel]], **kwargs: Any) Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]

Not implemented on this class.

Parameters
  • schema (Union[Dict, Type[BaseModel]]) –

  • kwargs (Any) –

Return type

Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]

Examples using TextGen