langchain_community.llms.textgen.TextGen

注意

TextGen 实现了标准的 Runnable 接口。 🏃

Runnable 接口 在 runnables 上有额外的方法可用,例如 with_types, with_retry, assign, bind, get_graph, 以及更多。

class langchain_community.llms.textgen.TextGen[source]

Bases: LLM

来自 WebUI 的文本生成模型。

要使用,您应该已安装 text-generation-webui,加载模型,并将 –api 添加为命令行选项。

建议安装,为您的操作系统使用一键安装程序: https://github.com/oobabooga/text-generation-webui#one-click-installers

以下参数取自 text-generation-webui api 示例: https://github.com/oobabooga/text-generation-webui/blob/main/api-examples/api-example.py

示例

from langchain_community.llms import TextGen
llm = TextGen(model_url="http://localhost:8500")
param add_bos_token: bool = True

将 bos_token 添加到提示的开头。禁用此选项可以使回复更具创意性。

param ban_eos_token: bool = False

禁止 eos_token。强制模型永远不要过早结束生成。

param cache: Union[BaseCache, bool, None] = None

是否缓存响应。

  • 如果为 true,将使用全局缓存。

  • 如果为 false,将不使用缓存

  • 如果为 None,如果已设置全局缓存,则使用全局缓存,否则不使用缓存。

  • 如果是 BaseCache 的实例,将使用提供的缓存。

模型流式传输方法目前不支持缓存。

param callback_manager: Optional[BaseCallbackManager] = None

[已弃用]

param callbacks: Callbacks = None

要添加到运行跟踪的回调。

param custom_get_token_ids: Optional[Callable[[str], List[int]]] = None

用于计算 token 的可选编码器。

param do_sample: bool = True

进行采样

param early_stopping: bool = False

提前停止

param epsilon_cutoff: Optional[float] = 0

Epsilon 截断

param eta_cutoff: Optional[float] = 0

ETA 截断

param length_penalty: Optional[float] = 1

长度惩罚

param max_new_tokens: Optional[int] = 250

要生成的最大 token 数。

param metadata: Optional[Dict[str, Any]] = None

要添加到运行跟踪的元数据。

param min_length: Optional[int] = 0

以 token 为单位的最小生成长度。

param model_url: str [必需]

textgen webui 的完整 URL,包括 http[s]://host:port

param no_repeat_ngram_size: Optional[int] = 0

如果未设置为 0,则指定完全阻止重复的 token 集的长度。值越高 = 阻止更大的短语,值越低 = 阻止单词或字母重复。在大多数情况下,只有 0 或高值才是好主意。

param num_beams: Optional[int] = 1

Beam 数量

param penalty_alpha: Optional[float] = 0

惩罚 Alpha 值

param preset: Optional[str] = None

要在 textgen webui 中使用的预设

param repetition_penalty: Optional[float] = 1.18

重复先前 token 的指数惩罚因子。1 表示无惩罚,值越高 = 重复越少,值越低 = 重复越多。

param seed: int = -1

种子(-1 表示随机)

param skip_special_tokens: bool = True

跳过特殊 token。某些特定模型需要取消设置此项。

param stopping_strings: Optional[List[str]] = []

遇到时停止生成的字符串列表。

param streaming: bool = False

是否逐个 token 流式传输结果。

param tags: Optional[List[str]] = None

要添加到运行跟踪的标签。

param temperature: Optional[float] = 1.3

控制输出随机性的主要因素。0 = 确定性(仅使用最可能的 token)。值越高 = 随机性越高。

param top_k: Optional[float] = 40

类似于 top_p,但改为仅选择前 k 个最可能的 token。值越高 = 可能的随机结果范围越高。

param top_p: Optional[float] = 0.1

如果未设置为 1,则选择概率总和小于此数字的 token。值越高 = 可能的随机结果范围越高。

param truncation_length: Optional[int] = 2048

将提示截断为此长度。如果提示超过此长度,则删除最左侧的 token。大多数模型要求此值最多为 2048。

param typical_p: Optional[float] = 1

如果未设置为 1,则仅选择那些根据先前的文本,至少比随机 token 更可能出现的 token。

param verbose: bool [可选]

是否打印输出响应文本。

__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler],BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) str

Deprecated since version langchain-core==0.1.7: Use invoke instead.

检查缓存并在给定提示和输入上运行 LLM。

参数
  • prompt (str) – 要从中生成的提示。

  • stop (Optional[List[str]]) – 生成时要使用的停止词。模型输出在首次出现任何这些子字符串时被截断。

  • callbacks (可选[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 传递的回调函数。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。

  • tags (可选[List[str]]) – 与提示关联的标签列表。

  • metadata (可选[Dict[str, Any]]) – 与提示关联的元数据。

  • **kwargs (Any) – 任意附加的关键字参数。这些参数通常传递给模型提供商 API 调用。

返回值

生成的文本。

Raises

ValueError – 如果提示不是字符串。

返回类型

str

async abatch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List,RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) List[str]

默认实现使用 asyncio.gather 并行运行 ainvoke。

batch 的默认实现对于 IO 密集型 runnable 效果良好。

如果子类可以更有效地进行批处理,则应覆盖此方法;例如,如果底层 Runnable 使用支持批处理模式的 API。

参数
  • inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]]) – Runnable 的输入列表。

  • config (可选[Union[RunnableConfig, List[RunnableConfig]]]) – 调用 Runnable 时使用的配置。该配置支持标准键,如用于跟踪目的的“tags”、“metadata”,用于控制并行执行量的“max_concurrency”以及其他键。请参阅 RunnableConfig 了解更多详情。默认为 None。

  • return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。

  • kwargs (Any) – 传递给 Runnable 的其他关键字参数。

返回值

Runnable 的输出列表。

返回类型

List[str]

async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]]

并行运行列表中输入的 ainvoke,并在结果完成时产生结果。

参数
  • inputs (Sequence[Input]) – Runnable 的输入列表。

  • config (可选[Union[RunnableConfig, Sequence[RunnableConfig]]]) – 调用 Runnable 时使用的配置。该配置支持标准键,如用于跟踪目的的“tags”、“metadata”,用于控制并行执行量的“max_concurrency”以及其他键。请参阅 RunnableConfig 了解更多详情。默认为 None。默认为 None。

  • return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。

  • kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。

Yields

输入索引和来自 Runnable 的输出的元组。

返回类型

AsyncIterator[Tuple[int, Union[Output, Exception]]]

async agenerate(prompts: List[str], stop: Optional[List,str]] = None, callbacks: Union[List,BaseCallbackHandler], BaseCallbackManager, None, List,Optional,Union,List,BaseCallbackHandler]], BaseCallbackManager]]]] = None, *, tags: Optional[Union,List,str], List,List,str]]]] = None, metadata: Optional[Union,Dict,str, Any], List,Dict,str, Any]]]] = None, run_name: Optional[Union,str, List,str]]] = None, run_id: Optional[Union,UUID, List,Optional,UUID]]]] = None, **kwargs: Any) LLMResult

异步传递一系列提示给模型并返回生成结果。

此方法应利用为公开批处理 API 的模型进行的批处理调用。

当您想要以下操作时,请使用此方法:
  1. 利用批处理调用,

  2. 需要比模型生成的最佳值更多的输出,

  3. 正在构建与底层语言模型无关的链

    类型(例如,纯文本补全模型与聊天模型)。

参数
  • prompts (List[str]) – 字符串提示列表。

  • stop (Optional[List[str]]) – 生成时要使用的停止词。模型输出在首次出现任何这些子字符串时被截断。

  • callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – 传递的回调函数。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。

  • tags (可选[Union[List[str], List[List[str]]]]) – 与每个提示关联的标签列表。如果提供,则列表的长度必须与提示列表的长度匹配。

  • metadata (可选[Union[Dict[str, Any], List[Dict[str, Any]]]]) – 与每个提示关联的元数据字典列表。如果提供,则列表的长度必须与提示列表的长度匹配。

  • run_name (可选[Union[str, List[str]]]) – 与每个提示关联的运行名称列表。如果提供,则列表的长度必须与提示列表的长度匹配。

  • run_id (可选[Union[UUID, List[Optional[UUID]]]]) – 与每个提示关联的运行 ID 列表。如果提供,则列表的长度必须与提示列表的长度匹配。

  • **kwargs (Any) – 任意附加的关键字参数。这些参数通常传递给模型提供商 API 调用。

返回值

一个 LLMResult,其中包含每个输入

提示和附加的模型提供商特定输出的候选 Generations 列表。

返回类型

LLMResult

async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List,str]] = None, callbacks: Union[List,BaseCallbackHandler], BaseCallbackManager, None, List,Optional,Union,List,BaseCallbackHandler]], BaseCallbackManager]]]] = None, **kwargs: Any) LLMResult

异步传递一系列提示并返回模型生成结果。

此方法应利用为公开批处理 API 的模型进行的批处理调用。

当您想要以下操作时,请使用此方法:
  1. 利用批处理调用,

  2. 需要比模型生成的最佳值更多的输出,

  3. 正在构建与底层语言模型无关的链

    类型(例如,纯文本补全模型与聊天模型)。

参数
  • prompts (List[PromptValue]) – PromptValue 列表。PromptValue 是一个可以转换为匹配任何语言模型格式的对象(纯文本生成模型的字符串,以及聊天模型的 BaseMessages)。

  • stop (Optional[List[str]]) – 生成时要使用的停止词。模型输出在首次出现任何这些子字符串时被截断。

  • callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – 传递的回调函数。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。

  • **kwargs (Any) – 任意附加的关键字参数。这些参数通常传递给模型提供商 API 调用。

返回值

一个 LLMResult,其中包含每个输入

提示和附加的模型提供商特定输出的候选 Generations 列表。

返回类型

LLMResult

async ainvoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List,str], Tuple,str, str], str, Dict,str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List,str]] = None, **kwargs: Any) str

ainvoke 的默认实现,从线程调用 invoke。

即使 Runnable 没有实现 invoke 的原生异步版本,默认实现也允许使用异步代码。

如果子类可以异步运行,则应覆盖此方法。

参数
  • input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) –

  • config (Optional[RunnableConfig]) –

  • stop (Optional[List[str]]) –

  • kwargs (Any) –

返回类型

str

async apredict(text: str, *, stop: Optional[Sequence,str]] = None, **kwargs: Any) str

Deprecated since version langchain-core==0.1.7: 请使用 ainvoke 代替。

参数
  • text (str) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

返回类型

str

async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence,str]] = None, **kwargs: Any) BaseMessage

Deprecated since version langchain-core==0.1.7: 请使用 ainvoke 代替。

参数
  • messages (List[BaseMessage]) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

返回类型

BaseMessage

as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool

Beta

此 API 处于 beta 阶段,未来可能会发生变化。

从 Runnable 创建一个 BaseTool。

as_tool 将从 Runnable 实例化一个具有名称、描述和 args_schema 的 BaseTool。在可能的情况下,模式会从 runnable.get_input_schema 推断。或者(例如,如果 Runnable 接受 dict 作为输入,并且未键入特定的 dict 键),则可以直接使用 args_schema 指定模式。您还可以传递 arg_types 以仅指定必需的参数及其类型。

参数
  • args_schema (Optional[Type[BaseModel]]) – 工具的模式。默认为 None。

  • name (Optional[str]) – 工具的名称。默认为 None。

  • description (Optional[str]) – 工具的描述。默认为 None。

  • arg_types (Optional[Dict[str, Type]]) – 参数名称到类型的字典。默认为 None。

返回值

一个 BaseTool 实例。

返回类型

BaseTool

类型化的字典输入

from typing import List
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda

class Args(TypedDict):
    a: int
    b: List[int]

def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))

runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

dict 输入,通过 args_schema 指定模式

from typing import Any, Dict, List
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: Dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: List[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

dict 输入,通过 arg_types 指定模式

from typing import Any, Dict, List
from langchain_core.runnables import RunnableLambda

def f(x: Dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

字符串输入

from langchain_core.runnables import RunnableLambda

def f(x: str) -> str:
    return x + "a"

def g(x: str) -> str:
    return x + "z"

runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

0.2.14 版本新增功能。

async astream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List] = None, **kwargs: Any) AsyncIterator[str]

astream 的默认实现,它调用 ainvoke。如果子类支持流式输出,则应覆盖此方法。

参数
  • input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。

  • kwargs (Any) – 传递给 Runnable 的其他关键字参数。

  • stop (Optional[List[str]]) –

Yields

Runnable 的输出。

返回类型

AsyncIterator[str]

astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]

Beta

此 API 处于 beta 阶段,未来可能会发生变化。

生成事件流。

用于创建 StreamEvents 的迭代器,该迭代器提供有关 Runnable 进度的实时信息,包括来自中间结果的 StreamEvents。

StreamEvent 是一个具有以下模式的字典

  • event: str - 事件名称的格式为:

    格式:on_[runnable_type]_(start|stream|end)。

  • name: str - 生成事件的 Runnable 的名称。

  • run_id: str - 随机生成的 ID,与给定 Runnable 执行相关联,该 Runnable 发出事件。作为父 Runnable 执行一部分调用的子 Runnable 会被分配自己的唯一 ID。

    Runnable 的执行,该 Runnable 发出事件。作为父 Runnable 执行一部分调用的子 Runnable 会被分配自己的唯一 ID。

  • parent_ids: List[str] - 生成事件的父 runnables 的 ID。根 Runnable 将具有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。

    生成事件的父 runnables 的 ID。根 Runnable 将具有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。

  • tags: Optional[List[str]] - 生成事件的 Runnable 的标签。

    生成事件的 Runnable 的标签。

  • metadata: Optional[Dict[str, Any]] - 生成事件的 Runnable 的元数据。

    生成事件的 Runnable 的元数据。

  • data: Dict[str, Any]

下面是一个表格,说明了各种链可能发出的一些事件。为了简洁起见,元数据字段已从表格中省略。链定义已包含在表格之后。

注意 此参考表适用于模式的 V2 版本。

event

name

chunk

input

output

on_chat_model_start

[模型名称]

{“messages”: [[SystemMessage, HumanMessage]]}

on_chat_model_stream

[模型名称]

AIMessageChunk(content=”hello”)

on_chat_model_end

[模型名称]

{“messages”: [[SystemMessage, HumanMessage]]}

AIMessageChunk(content=”hello world”)

on_llm_start

[模型名称]

{‘input’: ‘hello’}

on_llm_stream

[模型名称]

‘Hello’

on_llm_end

[模型名称]

‘Hello human!’

on_chain_start

format_docs

on_chain_stream

format_docs

“hello world!, goodbye world!”

on_chain_end

format_docs

[Document(…)]

“hello world!, goodbye world!”

on_tool_start

some_tool

{“x”: 1, “y”: “2”}

on_tool_end

some_tool

{“x”: 1, “y”: “2”}

on_retriever_start

[检索器名称]

{“query”: “hello”}

on_retriever_end

[检索器名称]

{“query”: “hello”}

[Document(…), ..]

on_prompt_start

[模板名称]

{“question”: “hello”}

on_prompt_end

[模板名称]

{“question”: “hello”}

ChatPromptValue(messages: [SystemMessage, …])

除了标准事件外,用户还可以调度自定义事件(请参阅下面的示例)。

自定义事件将仅在 API 的 v2 版本中显示!

自定义事件具有以下格式

属性

类型

描述

name

str

用户为事件定义的名称。

data

Any

与事件关联的数据。这可以是任何内容,但我们建议使其可 JSON 序列化。

以下是与上面显示的标准事件关联的声明

format_docs:

def format_docs(docs: List[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])

format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

prompt:

template = ChatPromptTemplate.from_messages(
    [("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})

示例

from langchain_core.runnables import RunnableLambda

async def reverse(s: str) -> str:
    return s[::-1]

chain = RunnableLambda(func=reverse)

events = [
    event async for event in chain.astream_events("hello", version="v2")
]

# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]

示例:调度自定义事件

from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)
参数
  • input (Any) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。

  • version (Literal['v1', 'v2']) – 要使用的模式版本,v2v1。用户应使用 v2v1 用于向后兼容,将在 0.4.0 中弃用。在 API 稳定之前,不会分配默认值。自定义事件将仅在 v2 中显示。

  • include_names (Optional[Sequence[str]]) – 仅包括来自具有匹配名称的 runnables 的事件。

  • include_types (Optional[Sequence[str]]) – 仅包括来自具有匹配类型的 runnables 的事件。

  • include_tags (Optional[Sequence[str]]) – 仅包括来自具有匹配标签的 runnables 的事件。

  • exclude_names (Optional[Sequence[str]]) – 排除来自具有匹配名称的 runnables 的事件。

  • exclude_types (Optional[Sequence[str]]) – 排除来自具有匹配类型的 runnables 的事件。

  • exclude_tags (Optional[Sequence[str]]) – 排除来自具有匹配标签的 runnables 的事件。

  • kwargs (Any) – 要传递给 Runnable 的其他关键字参数。这些将传递给 astream_log,因为此 astream_events 的实现构建在 astream_log 之上。

Yields

StreamEvents 的异步流。

Raises

NotImplementedError – 如果版本不是 v1v2

返回类型

AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]

batch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, List]]], config: Optional[Union[RunnableConfig, List]]] = None, *, return_exceptions: bool = False, **kwargs: Any) List[str]

默认实现使用线程池执行器并行运行 invoke。

batch 的默认实现对于 IO 密集型 runnable 效果良好。

如果子类可以更有效地进行批处理,则应覆盖此方法;例如,如果底层 Runnable 使用支持批处理模式的 API。

参数
返回类型

List[str]

batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) Iterator[Tuple[int, Union[Output, Exception]]]

并行运行列表中输入的 invoke,并在完成时产生结果。

参数
  • inputs (Sequence[Input]) –

  • config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –

  • return_exceptions (bool) –

  • kwargs (Optional[Any]) –

返回类型

Iterator[Tuple[int, Union[Output, Exception]]]

configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output]

配置可在运行时设置的 Runnables 的备选项。

参数
  • which (ConfigurableField) – 将用于选择备选项的 ConfigurableField 实例。

  • default_key (str) – 如果未选择任何备选项,则使用的默认键。默认为“default”。

  • prefix_keys (bool) – 是否使用 ConfigurableField id 作为键的前缀。默认为 False。

  • **kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – 键到 Runnable 实例或返回 Runnable 实例的可调用对象的字典。

返回值

配置了备选项的新 Runnable。

返回类型

RunnableSerializable[Input, Output]

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-3-sonnet-20240229"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI()
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(
        configurable={"llm": "openai"}
    ).invoke("which organization created you?").content
)
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output]

在运行时配置特定的 Runnable 字段。

参数

**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – 要配置的 ConfigurableField 实例的字典。

返回值

配置了字段的新 Runnable。

返回类型

RunnableSerializable[Input, Output]

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print(
    "max_tokens_20: ",
    model.invoke("tell me something about chess").content
)

# max_tokens = 200
print("max_tokens_200: ", model.with_config(
    configurable={"output_token_number": 200}
    ).invoke("tell me something about chess").content
)
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) LLMResult

将一系列提示传递给模型并返回生成结果。

此方法应利用为公开批处理 API 的模型进行的批处理调用。

当您想要以下操作时,请使用此方法:
  1. 利用批处理调用,

  2. 需要比模型生成的最佳值更多的输出,

  3. 正在构建与底层语言模型无关的链

    类型(例如,纯文本补全模型与聊天模型)。

参数
  • prompts (List[str]) – 字符串提示列表。

  • stop (Optional[List[str]]) – 生成时要使用的停止词。模型输出在首次出现任何这些子字符串时被截断。

  • callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – 传递的回调函数。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。

  • tags (可选[Union[List[str], List[List[str]]]]) – 与每个提示关联的标签列表。如果提供,则列表的长度必须与提示列表的长度匹配。

  • metadata (可选[Union[Dict[str, Any], List[Dict[str, Any]]]]) – 与每个提示关联的元数据字典列表。如果提供,则列表的长度必须与提示列表的长度匹配。

  • run_name (可选[Union[str, List[str]]]) – 与每个提示关联的运行名称列表。如果提供,则列表的长度必须与提示列表的长度匹配。

  • run_id (可选[Union[UUID, List[Optional[UUID]]]]) – 与每个提示关联的运行 ID 列表。如果提供,则列表的长度必须与提示列表的长度匹配。

  • **kwargs (Any) – 任意附加的关键字参数。这些参数通常传递给模型提供商 API 调用。

返回值

一个 LLMResult,其中包含每个输入

提示和附加的模型提供商特定输出的候选 Generations 列表。

返回类型

LLMResult

generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) LLMResult

将一系列提示传递给模型并返回模型生成结果。

此方法应利用为公开批处理 API 的模型进行的批处理调用。

当您想要以下操作时,请使用此方法:
  1. 利用批处理调用,

  2. 需要比模型生成的最佳值更多的输出,

  3. 正在构建与底层语言模型无关的链

    类型(例如,纯文本补全模型与聊天模型)。

参数
  • prompts (List[PromptValue]) – PromptValue 列表。PromptValue 是一个可以转换为匹配任何语言模型格式的对象(纯文本生成模型的字符串,以及聊天模型的 BaseMessages)。

  • stop (Optional[List[str]]) – 生成时要使用的停止词。模型输出在首次出现任何这些子字符串时被截断。

  • callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – 传递的回调函数。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。

  • **kwargs (Any) – 任意附加的关键字参数。这些参数通常传递给模型提供商 API 调用。

返回值

一个 LLMResult,其中包含每个输入

提示和附加的模型提供商特定输出的候选 Generations 列表。

返回类型

LLMResult

get_num_tokens(text: str) int

获取文本中存在的 tokens 数量。

用于检查输入是否适合模型的上下文窗口。

参数

text (str) – 要进行 token 化的字符串输入。

返回值

文本中 tokens 的整数数量。

返回类型

int

get_num_tokens_from_messages(messages: List[BaseMessage]) int

获取消息中的 tokens 数量。

用于检查输入是否适合模型的上下文窗口。

参数

messages (List[BaseMessage]) – 要进行 token 化的消息输入。

返回值

消息中所有 tokens 数量的总和。

返回类型

int

get_token_ids(text: str) List[int]

返回文本中 tokens 的有序 ID。

参数

text (str) – 要进行 token 化的字符串输入。

返回值

与文本中 tokens 对应的 ID 列表,按它们在文本中出现的顺序排列。

在文本中。

返回类型

List[int]

invoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) str

将单个输入转换为输出。重写以实现。

参数
  • input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 调用 Runnable 时使用的配置。该配置支持标准键,如用于跟踪目的的“tags”和“metadata”,用于控制并行执行多少工作的“max_concurrency”以及其他键。请参阅 RunnableConfig 以获取更多详细信息。

  • stop (Optional[List[str]]) –

  • kwargs (Any) –

返回值

Runnable 的输出。

返回类型

str

predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str

Deprecated since version langchain-core==0.1.7: Use invoke instead.

参数
  • text (str) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

返回类型

str

predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage

Deprecated since version langchain-core==0.1.7: Use invoke instead.

参数
  • messages (List[BaseMessage]) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

返回类型

BaseMessage

save(file_path: Union[Path, str]) None

保存 LLM。

参数

file_path (Union[Path, str]) – 保存 LLM 的文件路径。

Raises

ValueError – 如果文件路径不是字符串或 Path 对象。

返回类型

None

Example: .. code-block:: python

llm.save(file_path=”path/llm.yaml”)

stream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) Iterator[str]

流式处理的默认实现,它调用 invoke。如果子类支持流式输出,则应重写此方法。

参数
  • input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。

  • kwargs (Any) – 传递给 Runnable 的其他关键字参数。

  • stop (Optional[List[str]]) –

Yields

Runnable 的输出。

返回类型

Iterator[str]

to_json() Union[SerializedConstructor, SerializedNotImplemented]

将 Runnable 序列化为 JSON。

返回值

Runnable 的 JSON 可序列化表示。

返回类型

Union[SerializedConstructor, SerializedNotImplemented]

with_structured_output(schema: Union[Dict, Type[BaseModel]], **kwargs: Any) Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]

在此类中未实现。

参数
  • schema (Union[Dict, Type[BaseModel]]) –

  • kwargs (Any) –

返回类型

Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]

TextGen 的使用示例