langchain_community.llms.ollama.Ollama

注意

Ollama 实现了标准的 Runnable 接口。 🏃

Runnable 接口 具有在可运行对象上可用的附加方法,例如 with_typeswith_retryassignbindget_graph 等等。

class langchain_community.llms.ollama.Ollama[source]

基类: BaseLLM, _OllamaCommon

Ollama 在本地运行大型语言模型。要使用,请按照 https://ollama.org.cn/ 上的说明操作。 .. rubric:: 示例

param auth: Union[Callable, Tuple, None] = None

用于启用 Basic/Digest/Custom HTTP Auth 的附加 auth 元组或可调用对象。 期望与 requests.request auth 参数相同的格式、类型和值。

param base_url: str = 'http://localhost:11434'

模型托管的基础 URL。

param cache: Union[BaseCache, bool, None] = None

是否缓存响应。

  • 如果为 true,将使用全局缓存。

  • 如果为 false,将不使用缓存

  • 如果为 None,如果已设置全局缓存,则使用全局缓存,否则不使用缓存。

  • 如果为 BaseCache 的实例,将使用提供的缓存。

模型流式传输方法目前不支持缓存。

param callback_manager: Optional[BaseCallbackManager] = None

[已弃用]

param callbacks: Callbacks = None

要添加到运行轨迹的回调。

param custom_get_token_ids: Optional[Callable[[str], List[int]]] = None

用于计算 token 的可选编码器。

param format: Optional[str] = None

指定输出格式(例如,json)

param headers: Optional[dict] = None

要传递到端点的附加标头(例如 Authorization、Referer)。 当 Ollama 托管在需要令牌进行身份验证的云服务上时,这非常有用。

param keep_alive: Optional[Union[int, str]] = None

模型在内存中保持加载的时间。

参数(默认值:5 分钟)可以设置为:1. Golang 中的持续时间字符串(例如“10m”或“24h”); 2. 秒数(例如 3600); 3. 任何负数,这将使模型保持加载到内存中(例如 -1 或“-1m”); 4. 0,这将在生成响应后立即卸载模型;

请参阅 [Ollama 文档](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-do-i-keep-a-model-loaded-in-memory-or-make-it-unload-immediately)

param metadata: Optional[Dict[str, Any]] = None

要添加到运行轨迹的元数据。

param mirostat: Optional[int] = None

启用 Mirostat 采样以控制困惑度。(默认值:0,0 = 禁用,1 = Mirostat,2 = Mirostat 2.0)

param mirostat_eta: Optional[float] = None

影响算法对生成文本的反馈做出响应的速度。 较低的学习率将导致较慢的调整,而较高的学习率将使算法更灵敏。(默认值:0.1)

param mirostat_tau: Optional[float] = None

控制输出的连贯性和多样性之间的平衡。 较低的值将产生更集中和连贯的文本。(默认值:5.0)

param model: str = 'llama2'

要使用的模型名称。

param num_ctx: Optional[int] = None

设置用于生成下一个 token 的上下文窗口大小。(默认值:2048)

param num_gpu: Optional[int] = None

要使用的 GPU 数量。 在 macOS 上,它默认为 1 以启用 Metal 支持,0 为禁用。

param num_predict: Optional[int] = None

生成文本时要预测的最大 token 数。(默认值:128,-1 = 无限生成,-2 = 填充上下文)

param num_thread: Optional[int] = None

设置计算期间要使用的线程数。 默认情况下,Ollama 将检测到这一点以获得最佳性能。 建议将此值设置为系统拥有的物理 CPU 核心数(而不是逻辑核心数)。

param raw: Optional[bool] = None

是否为 raw 格式。

param repeat_last_n: Optional[int] = None

设置模型回溯以防止重复的距离。(默认值:64,0 = 禁用,-1 = num_ctx)

param repeat_penalty: Optional[float] = None

设置对重复进行惩罚的强度。 较高的值(例如 1.5)将更强烈地惩罚重复,而较低的值(例如 0.9)将更宽松。(默认值:1.1)

param stop: Optional[List[str]] = None

设置要使用的停止 token。

param system: Optional[str] = None

系统提示(覆盖 Modelfile 中定义的提示)

param tags: Optional[List[str]] = None

要添加到运行轨迹的标签。

param temperature: Optional[float] = None

模型的温度。 升高温度会使模型的回答更具创造性。(默认值:0.8)

param template: Optional[str] = None

完整提示或提示模板(覆盖 Modelfile 中定义的提示)

param tfs_z: Optional[float] = None

尾部自由采样用于减少输出中不太可能的 token 的影响。 较高的值(例如 2.0)将更多地减少影响,而值 1.0 会禁用此设置。(默认值:1)

param timeout: Optional[int] = None

请求流的超时时间

param top_k: Optional[int] = None

降低生成无意义内容的可能性。 较高的值(例如 100)将给出更多样化的答案,而较低的值(例如 10)将更保守。(默认值:40)

param top_p: Optional[float] = None

与 top-k 协同工作。 较高的值(例如 0.95)将导致更多样化的文本,而较低的值(例如 0.5)将生成更集中和保守的文本。(默认值:0.9)

param verbose: bool [Optional]

是否打印输出响应文本。

__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) str

在 langchain-core==0.1.7 版本中已弃用: 请使用 invoke 代替。

检查缓存并在给定的提示和输入上运行 LLM。

参数
  • prompt (str) – 要从中生成的提示。

  • stop (Optional[List[str]]) – 生成时要使用的停止词。 模型输出在第一次出现任何这些子字符串时被截断。

  • callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 要传递的回调。 用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。

  • tags (Optional[List[str]]) – 与提示关联的标签列表。

  • metadata (Optional[Dict[str, Any]]) – 与提示关联的元数据。

  • **kwargs (Any) – 任意附加关键字参数。 这些通常传递给模型提供商 API 调用。

返回值

生成的文本。

引发

ValueError – 如果提示不是字符串。

返回类型

str

async abatch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) List[str]

默认实现使用 asyncio.gather 并行运行 ainvoke。

batch 的默认实现非常适合 IO 绑定 runnable。

如果子类可以更有效地进行批量处理,则应覆盖此方法;例如,如果底层的 Runnable 使用支持批量模式的 API。

参数
  • inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]]) – Runnable 的输入列表。

  • config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – 调用 Runnable 时使用的配置。该配置支持标准键,如用于追踪目的的 ‘tags’、‘metadata’,用于控制并行执行量的 ‘max_concurrency’ 以及其他键。请参阅 RunnableConfig 以了解更多详情。默认为 None。

  • return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。

  • kwargs (Any) – 传递给 Runnable 的其他关键字参数。

返回值

来自 Runnable 的输出列表。

返回类型

List[str]

async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]]

并行运行 ainvoke 于输入列表,并在结果完成时生成结果。

参数
  • inputs (Sequence[Input]) – Runnable 的输入列表。

  • config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – 调用 Runnable 时使用的配置。该配置支持标准键,如用于追踪目的的 ‘tags’、‘metadata’,用于控制并行执行量的 ‘max_concurrency’ 以及其他键。请参阅 RunnableConfig 以了解更多详情。默认为 None。默认为 None。

  • return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。

  • kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。

Yields

输入索引和来自 Runnable 的输出的元组。

返回类型

AsyncIterator[Tuple[int, Union[Output, Exception]]]

async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) LLMResult

异步地将一系列提示传递给模型并返回生成结果。

此方法应利用模型的批量调用,以公开批量 API。

当您想要以下操作时,请使用此方法:
  1. 利用批量调用,

  2. 需要比模型仅生成的最佳值更多的输出,

  3. 正在构建与底层语言模型无关的链

    类型(例如,纯文本完成模型与聊天模型)。

参数
  • prompts (List[str]) – 字符串提示列表。

  • stop (Optional[List[str]]) – 生成时要使用的停止词。 模型输出在第一次出现任何这些子字符串时被截断。

  • callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – 要传递的回调。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。

  • tags (Optional[Union[List[str], List[List[str]]]]) – 与每个提示关联的标签列表。如果提供,则列表的长度必须与提示列表的长度匹配。

  • metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – 与每个提示关联的元数据字典列表。如果提供,则列表的长度必须与提示列表的长度匹配。

  • run_name (Optional[Union[str, List[str]]]) – 与每个提示关联的运行名称列表。如果提供,则列表的长度必须与提示列表的长度匹配。

  • run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – 与每个提示关联的运行 ID 列表。如果提供,则列表的长度必须与提示列表的长度匹配。

  • **kwargs (Any) – 任意附加关键字参数。 这些通常传递给模型提供商 API 调用。

返回值

一个 LLMResult,其中包含每个输入的一系列候选生成结果

提示和额外的模型提供商特定的输出。

返回类型

LLMResult

async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) LLMResult

异步地传递一系列提示并返回模型生成结果。

此方法应利用模型的批量调用,以公开批量 API。

当您想要以下操作时,请使用此方法:
  1. 利用批量调用,

  2. 需要比模型仅生成的最佳值更多的输出,

  3. 正在构建与底层语言模型无关的链

    类型(例如,纯文本完成模型与聊天模型)。

参数
  • prompts (List[PromptValue]) – PromptValue 列表。PromptValue 是一个可以转换为匹配任何语言模型格式的对象(纯文本生成模型的字符串和聊天模型的 BaseMessages)。

  • stop (Optional[List[str]]) – 生成时要使用的停止词。 模型输出在第一次出现任何这些子字符串时被截断。

  • callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – 要传递的回调。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。

  • **kwargs (Any) – 任意附加关键字参数。 这些通常传递给模型提供商 API 调用。

返回值

一个 LLMResult,其中包含每个输入的一系列候选生成结果

提示和额外的模型提供商特定的输出。

返回类型

LLMResult

async ainvoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) str

ainvoke 的默认实现,从线程调用 invoke。

即使 Runnable 没有实现 invoke 的原生异步版本,默认实现也允许使用异步代码。

如果子类可以异步运行,则应覆盖此方法。

参数
  • input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) –

  • config (Optional[RunnableConfig]) –

  • stop (Optional[List[str]]) –

  • kwargs (Any) –

返回类型

str

async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str

Deprecated since version langchain-core==0.1.7: 使用 ainvoke 代替。

参数
  • text (str) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

返回类型

str

async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage

Deprecated since version langchain-core==0.1.7: 使用 ainvoke 代替。

参数
  • messages (List[BaseMessage]) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

返回类型

BaseMessage

as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool

Beta

此 API 处于 Beta 阶段,将来可能会发生更改。

从 Runnable 创建一个 BaseTool。

as_tool 将从 Runnable 实例化一个带有名称、描述和 args_schema 的 BaseTool。如果可能,架构将从 runnable.get_input_schema 推断。或者(例如,如果 Runnable 接受 dict 作为输入,并且未键入特定的 dict 键),可以使用 args_schema 直接指定架构。您还可以传递 arg_types 以仅指定所需的参数及其类型。

参数
  • args_schema (Optional[Type[BaseModel]]) – 工具的架构。默认为 None。

  • name (Optional[str]) – 工具的名称。默认为 None。

  • description (Optional[str]) – 工具的描述。默认为 None。

  • arg_types (Optional[Dict[str, Type]]) – 参数名称到类型的字典。默认为 None。

返回值

一个 BaseTool 实例。

返回类型

BaseTool

类型化字典输入

from typing import List
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda

class Args(TypedDict):
    a: int
    b: List[int]

def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))

runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

dict 输入,通过 args_schema 指定架构

from typing import Any, Dict, List
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: Dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: List[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

dict 输入,通过 arg_types 指定架构

from typing import Any, Dict, List
from langchain_core.runnables import RunnableLambda

def f(x: Dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

字符串输入

from langchain_core.runnables import RunnableLambda

def f(x: str) -> str:
    return x + "a"

def g(x: str) -> str:
    return x + "z"

runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

0.2.14 版本中的新功能。

async astream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) AsyncIterator[str]

`astream` 的默认实现,它调用 `ainvoke`。如果子类支持流式输出,则应重写此方法。

参数
  • input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。

  • kwargs (Any) – 传递给 Runnable 的其他关键字参数。

  • stop (Optional[List[str]]) –

Yields

Runnable 的输出。

返回类型

AsyncIterator[str]

astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]

Beta

此 API 处于 Beta 阶段,将来可能会发生更改。

生成事件流。

用于创建 StreamEvents 的迭代器,该迭代器提供关于 Runnable 进度的实时信息,包括来自中间结果的 StreamEvents。

StreamEvent 是一个具有以下模式的字典

  • event: str - 事件名称的格式为

    格式:on_[runnable_type]_(start|stream|end)。

  • name: str - 生成事件的 Runnable 的名称。

  • run_id: str - 与给定 Runnable 执行关联的随机生成的 ID,

    该 Runnable 发出了事件。作为父 Runnable 执行的一部分被调用的子 Runnable 将被分配其自己的唯一 ID。

  • parent_ids: List[str] - 生成事件的父 runnables 的 ID 列表。

    根 Runnable 将具有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。

  • tags: Optional[List[str]] - 生成事件的 Runnable 的标签。

    事件。

  • metadata: Optional[Dict[str, Any]] - 生成事件的 Runnable 的元数据。

    事件。

  • data: Dict[str, Any]

下面是一个表格,说明了各种链可能发出的一些事件。为了简洁起见,元数据字段已从表格中省略。链定义已包含在表格之后。

注意 此参考表适用于 V2 版本的模式。

事件

名称

输入

输出

on_chat_model_start

[模型名称]

{“messages”: [[SystemMessage, HumanMessage]]}

on_chat_model_stream

[模型名称]

AIMessageChunk(content=”hello”)

on_chat_model_end

[模型名称]

{“messages”: [[SystemMessage, HumanMessage]]}

AIMessageChunk(content=”hello world”)

on_llm_start

[模型名称]

{‘input’: ‘hello’}

on_llm_stream

[模型名称]

‘Hello’

on_llm_end

[模型名称]

‘Hello human!’

on_chain_start

format_docs

on_chain_stream

format_docs

“hello world!, goodbye world!”

on_chain_end

format_docs

[Document(…)]

“hello world!, goodbye world!”

on_tool_start

some_tool

{“x”: 1, “y”: “2”}

on_tool_end

some_tool

{“x”: 1, “y”: “2”}

on_retriever_start

[检索器名称]

{“query”: “hello”}

on_retriever_end

[检索器名称]

{“query”: “hello”}

[Document(…), ..]

on_prompt_start

[模板名称]

{“question”: “hello”}

on_prompt_end

[模板名称]

{“question”: “hello”}

ChatPromptValue(messages: [SystemMessage, …])

除了标准事件之外,用户还可以调度自定义事件(请参见下面的示例)。

自定义事件将仅在 API 的 v2 版本中公开!

自定义事件具有以下格式

属性

类型

描述

名称

str

事件的用户定义名称。

数据

Any

与事件关联的数据。这可以是任何内容,但我们建议使其可 JSON 序列化。

以下是与上面所示的标准事件关联的声明

format_docs:

def format_docs(docs: List[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])

format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

提示:

template = ChatPromptTemplate.from_messages(
    [("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})

示例

from langchain_core.runnables import RunnableLambda

async def reverse(s: str) -> str:
    return s[::-1]

chain = RunnableLambda(func=reverse)

events = [
    event async for event in chain.astream_events("hello", version="v2")
]

# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]

示例:调度自定义事件

from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)
参数
  • input (Any) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。

  • version (Literal['v1', 'v2']) – 要使用的模式版本,可以是 v2v1。用户应使用 v2v1 用于向后兼容,将在 0.4.0 中弃用。在 API 稳定之前,不会分配默认值。自定义事件将仅在 v2 中公开。

  • include_names (Optional[Sequence[str]]) – 仅包含来自具有匹配名称的 runnables 的事件。

  • include_types (Optional[Sequence[str]]) – 仅包含来自具有匹配类型的 runnables 的事件。

  • include_tags (Optional[Sequence[str]]) – 仅包含来自具有匹配标签的 runnables 的事件。

  • exclude_names (Optional[Sequence[str]]) – 排除来自具有匹配名称的 runnables 的事件。

  • exclude_types (Optional[Sequence[str]]) – 排除来自具有匹配类型的 runnables 的事件。

  • exclude_tags (Optional[Sequence[str]]) – 排除来自具有匹配标签的 runnables 的事件。

  • kwargs (Any) – 要传递给 Runnable 的其他关键字参数。这些参数将传递给 astream_log,因为此 astream_events 的实现构建在 astream_log 之上。

Yields

StreamEvents 的异步流。

引发

NotImplementedError – 如果版本不是 v1v2

返回类型

AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]

batch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) List[str]

默认实现使用线程池执行器并行运行 invoke。

batch 的默认实现非常适合 IO 绑定 runnable。

如果子类可以更有效地进行批量处理,则应覆盖此方法;例如,如果底层的 Runnable 使用支持批量模式的 API。

参数
返回类型

List[str]

batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) Iterator[Tuple[int, Union[Output, Exception]]]

并行运行列表中输入的 invoke,并在完成时产生结果。

参数
  • inputs (Sequence[Input]) –

  • config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –

  • return_exceptions (bool) –

  • kwargs (Optional[Any]) –

返回类型

Iterator[Tuple[int, Union[Output, Exception]]]

configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output]

配置可在运行时设置的 Runnables 的备选项。

参数
  • which (ConfigurableField) – 将用于选择备选项的 ConfigurableField 实例。

  • default_key (str) – 如果未选择备选项,则使用的默认键。默认为 “default”。

  • prefix_keys (bool) – 是否用 ConfigurableField id 作为键的前缀。默认为 False。

  • **kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – 键到 Runnable 实例或返回 Runnable 实例的可调用对象的字典。

返回值

配置了备选项的新 Runnable。

返回类型

RunnableSerializable[Input, Output]

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-3-sonnet-20240229"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI()
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(
        configurable={"llm": "openai"}
    ).invoke("which organization created you?").content
)
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output]

在运行时配置特定的 Runnable 字段。

参数

**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – 要配置的 ConfigurableField 实例的字典。

返回值

配置了字段的新 Runnable。

返回类型

RunnableSerializable[Input, Output]

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print(
    "max_tokens_20: ",
    model.invoke("tell me something about chess").content
)

# max_tokens = 200
print("max_tokens_200: ", model.with_config(
    configurable={"output_token_number": 200}
    ).invoke("tell me something about chess").content
)
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) LLMResult

将提示序列传递给模型并返回生成结果。

此方法应利用模型的批量调用,以公开批量 API。

当您想要以下操作时,请使用此方法:
  1. 利用批量调用,

  2. 需要比模型仅生成的最佳值更多的输出,

  3. 正在构建与底层语言模型无关的链

    类型(例如,纯文本完成模型与聊天模型)。

参数
  • prompts (List[str]) – 字符串提示列表。

  • stop (Optional[List[str]]) – 生成时要使用的停止词。 模型输出在第一次出现任何这些子字符串时被截断。

  • callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – 要传递的回调。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。

  • tags (Optional[Union[List[str], List[List[str]]]]) – 与每个提示关联的标签列表。如果提供,则列表的长度必须与提示列表的长度匹配。

  • metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – 与每个提示关联的元数据字典列表。如果提供,则列表的长度必须与提示列表的长度匹配。

  • run_name (Optional[Union[str, List[str]]]) – 与每个提示关联的运行名称列表。如果提供,则列表的长度必须与提示列表的长度匹配。

  • run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – 与每个提示关联的运行 ID 列表。如果提供,则列表的长度必须与提示列表的长度匹配。

  • **kwargs (Any) – 任意附加关键字参数。 这些通常传递给模型提供商 API 调用。

返回值

一个 LLMResult,其中包含每个输入的一系列候选生成结果

提示和额外的模型提供商特定的输出。

返回类型

LLMResult

generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional]Union[List[BaseCallbackHandler], BaseCallbackManager]]] = None, **kwargs: Any) LLMResult

将一系列提示传递给模型并返回模型生成结果。

此方法应利用模型的批量调用,以公开批量 API。

当您想要以下操作时,请使用此方法:
  1. 利用批量调用,

  2. 需要比模型仅生成的最佳值更多的输出,

  3. 正在构建与底层语言模型无关的链

    类型(例如,纯文本完成模型与聊天模型)。

参数
  • prompts (List[PromptValue]) – PromptValue 列表。PromptValue 是一个可以转换为匹配任何语言模型格式的对象(纯文本生成模型的字符串和聊天模型的 BaseMessages)。

  • stop (Optional[List[str]]) – 生成时要使用的停止词。 模型输出在第一次出现任何这些子字符串时被截断。

  • callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – 要传递的回调。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。

  • **kwargs (Any) – 任意附加关键字参数。 这些通常传递给模型提供商 API 调用。

返回值

一个 LLMResult,其中包含每个输入的一系列候选生成结果

提示和额外的模型提供商特定的输出。

返回类型

LLMResult

get_num_tokens(text: str) int

获取文本中存在的 token 数量。

用于检查输入是否适合模型的上下文窗口。

参数

text (str) – 要进行 token 化的字符串输入。

返回值

文本中的整数 token 数量。

返回类型

int

get_num_tokens_from_messages(messages: List[BaseMessage]) int

获取消息中的 token 数量。

用于检查输入是否适合模型的上下文窗口。

参数

messages (List[BaseMessage]) – 要进行 token 化的消息输入。

返回值

所有消息的 token 数量总和。

返回类型

int

get_token_ids(text: str) List[int]

返回文本中 token 的有序 ID 列表。

参数

text (str) – 要进行 token 化的字符串输入。

返回值

与文本中的 token 相对应的 ID 列表,按照它们在文本中出现的顺序排列

在文本中。

返回类型

List[int]

invoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) str

将单个输入转换为输出。覆盖此方法以实现自定义逻辑。

参数
  • input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 调用 Runnable 时使用的配置。该配置支持标准键,如 ‘tags’、‘metadata’(用于跟踪目的)、‘max_concurrency’(用于控制并行处理量)以及其他键。请参阅 RunnableConfig 以获取更多详细信息。

  • stop (Optional[List[str]]) –

  • kwargs (Any) –

返回值

Runnable 的输出。

返回类型

str

predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str

在 langchain-core==0.1.7 版本中已弃用: 请使用 invoke 代替。

参数
  • text (str) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

返回类型

str

predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage

在 langchain-core==0.1.7 版本中已弃用: 请使用 invoke 代替。

参数
  • messages (List[BaseMessage]) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

返回类型

BaseMessage

save(file_path: Union[Path, str]) None

保存 LLM。

参数

file_path (Union[Path, str]) – LLM 的保存文件路径。

引发

ValueError – 如果文件路径不是字符串或 Path 对象。

返回类型

None

示例: .. code-block:: python

llm.save(file_path=”path/llm.yaml”)

stream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) Iterator[str]

流式传输的默认实现,它调用 invoke。如果子类支持流式输出,则应覆盖此方法。

参数
  • input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。

  • kwargs (Any) – 传递给 Runnable 的其他关键字参数。

  • stop (Optional[List[str]]) –

Yields

Runnable 的输出。

返回类型

Iterator[str]

to_json() Union[SerializedConstructor, SerializedNotImplemented]

将 Runnable 序列化为 JSON。

返回值

Runnable 的 JSON 可序列化表示形式。

返回类型

Union[SerializedConstructor, SerializedNotImplemented]

with_structured_output(schema: Union[Dict, Type[BaseModel]], **kwargs: Any) Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]

此类未实现。

参数
  • schema (Union[Dict, Type[BaseModel]]) –

  • kwargs (Any) –

返回类型

Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]

使用 Ollama 的示例