langchain_community.llms.aphrodite.Aphrodite

注意

Aphrodite 实现了标准的 Runnable 接口。 🏃

Runnable 接口 还有其他可用于 runnables 的方法,例如 with_types, with_retry, assign, bind, get_graph, 以及更多。

class langchain_community.llms.aphrodite.Aphrodite[源代码]

基类: BaseLLM

Aphrodite 语言模型。

param aphrodite_kwargs: Dict[str, Any] [可选]

包含 aphrodite.LLM 调用中所有未明确指定的有效模型参数。

param best_of: Optional[int] = None

从提示生成的输出序列数。从这些 best_of 序列中,返回前 n 个序列。best_of 必须 >= n。当 use_beam_search 为 True 时,这被视为束宽度。默认情况下,best_of 设置为 n

param cache: Union[BaseCache, bool, None] = None

是否缓存响应。

  • 如果为 true,将使用全局缓存。

  • 如果为 false,将不使用缓存

  • 如果为 None,如果已设置全局缓存,则使用全局缓存,否则不使用缓存。

  • 如果是 BaseCache 的实例,将使用提供的缓存。

模型流式传输方法目前不支持缓存。

param callback_manager: Optional[BaseCallbackManager] = None

[已弃用]

param callbacks: Callbacks = None

添加到运行轨迹的回调。

param custom_get_token_ids: Optional[Callable[[str], List[int]]] = None

用于计数 token 的可选编码器。

param custom_token_bans: Optional[List[int]] = None

要禁止生成的 token ID 列表。

param download_dir: Optional[str] = None

下载和加载权重的目录。(默认为 huggingface 的默认缓存目录)

param dtype: str = 'auto'

模型权重和激活的数据类型。

param early_stopping: bool = False

控制束搜索的停止条件。它接受以下值:True,其中当有 best_of 个完整候选项时生成停止;False,其中当不太可能找到更好的候选项时,启发式方法应用于生成停止;never,其中束搜索过程仅在无法找到更好的候选项时停止(规范束搜索算法)。

param epsilon_cutoff: float = 0.0

浮点数,控制 Epsilon 采样的截止阈值(简单概率阈值截断)。以 1e-4 为单位指定。设置为 0 以禁用。

param eta_cutoff: float = 0.0

浮点数,控制 Eta 采样的截止阈值(熵自适应截断采样的一种形式)。阈值计算为 `min(eta, sqrt(eta)*entropy(probs))。以 1e-4 为单位指定。设置为 0 以禁用。

param frequency_penalty: float = 0.0

浮点数,根据新 token 在迄今生成的文本中的频率惩罚新 token。累加应用于 logits。

param ignore_eos: bool = False

是否忽略 EOS token 并在生成 EOS token 后继续生成 token。

param length_penalty: float = 1.0

浮点数,根据序列的长度惩罚序列。仅当 use_beam_search 为 True 时使用。

param logit_bias: Optional[Dict[str, float]] = None

LogitsProcessors 列表,用于在运行时更改 token 预测的概率。

param logprobs: Optional[int] = None

每个输出 token 返回的对数概率数。

param max_tokens: int = 512

每个输出序列生成的最大 token 数。

param metadata: Optional[Dict[str, Any]] = None

添加到运行轨迹的元数据。

param min_p: float = 0.0

浮点数,控制 min-p 采样的截止值。精确截止值为 min_p*max_prob。必须在 [0,1] 范围内,0 表示禁用。

param mirostat_mode: int = 0

要使用的 mirostat 模式。0 表示无 mirostat,2 表示 mirostat v2。不支持模式 1。

param mirostat_tau: float = 0.0

mirostat 努力实现的目标“惊奇度”。范围 [0, inf)。

param model: str = ''

HuggingFace Transformers 模型的名称或路径。

param n: int = 1

为给定提示返回的输出序列数。

param presence_penalty: float = 0.0

浮点数,根据新 token 是否出现在迄今生成的文本中来惩罚新 token。值 > 0 鼓励模型生成新 token,而值 < 0 鼓励模型重复 token。

param prompt_logprobs: Optional[int] = None

每个提示 token 返回的对数概率数。

param quantization: Optional[str] = None

要使用的量化模式。可以是 awqgptq 之一。

param repetition_penalty: float = 1.0

浮点数,根据新 token 在迄今生成的文本中的频率惩罚新 token。乘法应用于 logits。

param skip_special_tokens: bool = True

是否跳过输出中的特殊 token。默认为 True。

param spaces_between_special_tokens: bool = True

是否在输出中的特殊 token 之间添加空格。默认为 True。

param stop: Optional[List[str]] = None

当生成停止字符串列表时,生成会停止。返回的输出将不包含停止 token。

param stop_token_ids: Optional[List[int]] = None

当生成停止 token 列表时,生成会停止。除非停止 token 是特殊 token,否则返回的输出将包含停止 token。

param tags: Optional[List[str]] = None

添加到运行轨迹的标签。

param temperature: float = 1.0

浮点数,控制采样的随机性。较低的值使模型更具确定性,而较高的值使模型更随机。零等效于贪婪采样。

param tensor_parallel_size: Optional[int] = 1

用于张量并行分布式执行的 GPU 数量。

param tfs: float = 1.0

浮点数,控制分布的累积近似曲率,以保留用于尾部自由采样。必须在 (0, 1] 范围内。设置为 1.0 以禁用。

param top_a: float = 0.0

浮点数,控制 Top-A 采样的截止值。精确截止值为 top_a*max_prob**2。必须在 [0,inf] 范围内,0 表示禁用。

param top_k: int = -1

整数,控制要考虑的顶部 token 的数量。设置为 -1 以考虑所有 token(禁用)。

param top_p: float = 1.0

浮点数,控制要考虑的顶部 token 的累积概率。必须在 (0, 1] 范围内。设置为 1.0 以考虑所有 token。

param trust_remote_code: Optional[bool] = False

下载模型和分词器时信任远程代码(例如,来自 HuggingFace)。

param typical_p: float = 1.0

浮点数,控制要考虑的与预期惊奇度最接近的 token 的累积概率。必须在 (0, 1] 范围内。设置为 1 以禁用。

是否使用束搜索而不是采样。

param verbose: bool [可选]

是否打印输出响应文本。

__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) str

Deprecated since version langchain-core==0.1.7: 请使用 invoke 代替。

检查缓存并在给定的 prompt 和输入上运行 LLM。

参数
  • prompt (str) – 从中生成的 prompt。

  • stop (Optional[List[str]]) – 生成时使用的停止词。模型输出将在首次出现这些子字符串中的任何一个时被截断。

  • callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 要传递的回调。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。

  • tags (Optional[List[str]]) – 与 prompt 关联的标签列表。

  • metadata (Optional[Dict[str, Any]]) – 与 prompt 关联的元数据。

  • **kwargs (Any) – 任意额外的关键字参数。这些通常会传递给模型提供商 API 调用。

返回

生成的文本。

引发

ValueError – 如果 prompt 不是字符串。

返回类型

str

async abatch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) List[str]

默认实现使用 asyncio.gather 并行运行 ainvoke。

批处理的默认实现非常适用于 IO 绑定的可运行对象。

如果子类可以更高效地进行批处理;例如,如果底层 Runnable 使用支持批处理模式的 API,则应重写此方法。

参数
  • inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]]) – 可运行对象的输入列表。

  • config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – 调用 Runnable 时使用的配置。 该配置支持标准键,例如用于跟踪目的的 ‘tags’、‘metadata’,用于控制并行执行多少工作的 ‘max_concurrency’ 以及其他键。 有关更多详细信息,请参阅 RunnableConfig。 默认为 None。

  • return_exceptions (bool) – 是否返回异常而不是引发它们。 默认为 False。

  • kwargs (Any) – 要传递给 Runnable 的其他关键字参数。

返回

来自 Runnable 的输出列表。

返回类型

List[str]

async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]]

在输入列表上并行运行 ainvoke,并在结果完成时产生结果。

参数
  • inputs (Sequence[Input]) – 可运行对象的输入列表。

  • config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – 调用 Runnable 时使用的配置。 该配置支持标准键,例如用于跟踪目的的 ‘tags’、‘metadata’,用于控制并行执行多少工作的 ‘max_concurrency’ 以及其他键。 有关更多详细信息,请参阅 RunnableConfig。 默认为 None。 默认为 None。

  • return_exceptions (bool) – 是否返回异常而不是引发它们。 默认为 False。

  • kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。

产生

输入的索引和来自 Runnable 的输出的元组。

返回类型

AsyncIterator[Tuple[int, Union[Output, Exception]]]

async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any]], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) LLMResult

异步地将一系列 prompt 传递给模型并返回生成结果。

此方法应利用支持批量 API 的模型的批量调用。

当您想要执行以下操作时,请使用此方法
  1. 利用批量调用,

  2. 需要比仅生成的最佳值更多的模型输出,

  3. 正在构建与底层语言模型类型无关的链

    类型(例如,纯文本完成模型与聊天模型)。

参数
  • prompts (List[str]) – 字符串 prompt 列表。

  • stop (Optional[List[str]]) – 生成时使用的停止词。模型输出将在首次出现这些子字符串中的任何一个时被截断。

  • callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – 要传递的回调。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。

  • tags (Optional[Union[List[str], List[List[str]]]]) – 与每个 prompt 关联的标签列表。 如果提供,则列表的长度必须与 prompts 列表的长度匹配。

  • metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – 与每个 prompt 关联的元数据字典列表。 如果提供,则列表的长度必须与 prompts 列表的长度匹配。

  • run_name (Optional[Union[str, List[str]]]) – 与每个 prompt 关联的运行名称列表。 如果提供,则列表的长度必须与 prompts 列表的长度匹配。

  • run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – 与每个 prompt 关联的运行 ID 列表。 如果提供,则列表的长度必须与 prompts 列表的长度匹配。

  • **kwargs (Any) – 任意额外的关键字参数。这些通常会传递给模型提供商 API 调用。

返回

一个 LLMResult,其中包含每个输入

prompt 的候选 Generations 列表以及其他模型提供商特定的输出。

返回类型

LLMResult

async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) LLMResult

异步地传递一系列 prompt 并返回模型生成结果。

此方法应利用支持批量 API 的模型的批量调用。

当您想要执行以下操作时,请使用此方法
  1. 利用批量调用,

  2. 需要比仅生成的最佳值更多的模型输出,

  3. 正在构建与底层语言模型类型无关的链

    类型(例如,纯文本完成模型与聊天模型)。

参数
  • prompts (List[PromptValue]) – PromptValue 列表。 PromptValue 是一个可以转换为匹配任何语言模型格式的对象(纯文本生成模型的字符串和聊天模型的 BaseMessages)。

  • stop (Optional[List[str]]) – 生成时使用的停止词。模型输出将在首次出现这些子字符串中的任何一个时被截断。

  • callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – 要传递的回调。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。

  • **kwargs (Any) – 任意额外的关键字参数。这些通常会传递给模型提供商 API 调用。

返回

一个 LLMResult,其中包含每个输入

prompt 的候选 Generations 列表以及其他模型提供商特定的输出。

返回类型

LLMResult

async ainvoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) str

ainvoke 的默认实现,从线程调用 invoke。

即使 Runnable 没有实现 invoke 的原生异步版本,默认实现也允许使用异步代码。

如果子类可以异步运行,则应重写此方法。

参数
  • input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) –

  • config (Optional[RunnableConfig]) –

  • stop (Optional[List[str]]) –

  • kwargs (Any) –

返回类型

str

async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str

Deprecated since version langchain-core==0.1.7: 请使用 ainvoke 代替。

参数
  • text (str) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

返回类型

str

async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage

Deprecated since version langchain-core==0.1.7: 请使用 ainvoke 代替。

参数
  • messages (List[BaseMessage]) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

返回类型

BaseMessage

as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool

Beta

此 API 处于 Beta 阶段,未来可能会发生更改。

从 Runnable 创建一个 BaseTool。

as_tool 将从 Runnable 实例化一个带有名称、描述和 args_schema 的 BaseTool。 在可能的情况下,模式会从 runnable.get_input_schema 中推断。或者(例如,如果 Runnable 接受字典作为输入,并且未键入特定的字典键),则可以直接使用 args_schema 指定模式。 您也可以传递 arg_types 以仅指定必需的参数及其类型。

参数
  • args_schema (Optional[Type[BaseModel]]) – 工具的模式。 默认为 None。

  • name (Optional[str]) – 工具的名称。 默认为 None。

  • description (Optional[str]) – 工具的描述。 默认为 None。

  • arg_types (Optional[Dict[str, Type]]) – 参数名称到类型的字典。 默认为 None。

返回

一个 BaseTool 实例。

返回类型

BaseTool

类型化字典输入

from typing import List
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda

class Args(TypedDict):
    a: int
    b: List[int]

def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))

runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

dict 输入,通过 args_schema 指定模式

from typing import Any, Dict, List
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: Dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: List[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

dict 输入,通过 arg_types 指定模式

from typing import Any, Dict, List
from langchain_core.runnables import RunnableLambda

def f(x: Dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

字符串输入

from langchain_core.runnables import RunnableLambda

def f(x: str) -> str:
    return x + "a"

def g(x: str) -> str:
    return x + "z"

runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

版本 0.2.14 中的新增功能。

async astream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List]] = None, **kwargs: Any) AsyncIterator[str]

astream 的默认实现,它调用 ainvoke。 如果子类支持流式输出,则应覆盖此方法。

参数
  • input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。 默认为 None。

  • kwargs (Any) – 要传递给 Runnable 的其他关键字参数。

  • stop (Optional[List[str]]) –

产生

Runnable 的输出。

返回类型

AsyncIterator[str]

astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence]] = None, include_types: Optional[Sequence]] = None, include_tags: Optional[Sequence]] = None, exclude_names: Optional[Sequence]] = None, exclude_types: Optional[Sequence]] = None, exclude_tags: Optional[Sequence]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]

Beta

此 API 处于 Beta 阶段,未来可能会发生更改。

生成事件流。

用于创建 StreamEvents 的迭代器,该迭代器提供关于 Runnable 进度的实时信息,包括来自中间结果的 StreamEvents。

StreamEvent 是一个具有以下模式的字典

  • eventstr - 事件名称的格式为:

    格式:on_[runnable_type]_(start|stream|end)。

  • namestr - 生成事件的 Runnable 的名称。

  • run_idstr - 随机生成的 ID,与 Runnable 的给定执行相关联,

    该 Runnable 发出了事件。 作为父 Runnable 执行一部分而被调用的子 Runnable 将被分配其自己唯一的 ID。

  • parent_idsList[str] - 生成事件的父 runnable 的 ID。

    根 Runnable 将有一个空列表。 父 ID 的顺序是从根到直接父级。 仅适用于 API 的 v2 版本。 API 的 v1 版本将返回一个空列表。

  • tagsOptional[List[str]] - 生成事件的 Runnable 的标签。

    事件。

  • metadataOptional[Dict[str, Any]] - 生成事件的 Runnable 的元数据

    事件。

  • dataDict[str, Any]

下面是一个表格,说明了各种链可能发出的一些事件。 为了简洁起见,已从表格中省略了元数据字段。 链定义已包含在表格之后。

注意 此参考表适用于模式的 V2 版本。

事件

名称

输入

输出

on_chat_model_start

[模型名称]

{“messages”: [[SystemMessage, HumanMessage]]}

on_chat_model_stream

[模型名称]

AIMessageChunk(content=”hello”)

on_chat_model_end

[模型名称]

{“messages”: [[SystemMessage, HumanMessage]]}

AIMessageChunk(content=”hello world”)

on_llm_start

[模型名称]

{‘input’: ‘hello’}

on_llm_stream

[模型名称]

‘Hello’

on_llm_end

[模型名称]

‘Hello human!’

on_chain_start

format_docs

on_chain_stream

format_docs

“hello world!, goodbye world!”

on_chain_end

format_docs

[Document(…)]

“hello world!, goodbye world!”

on_tool_start

some_tool

{“x”: 1, “y”: “2”}

on_tool_end

some_tool

{“x”: 1, “y”: “2”}

on_retriever_start

[检索器名称]

{“query”: “hello”}

on_retriever_end

[检索器名称]

{“query”: “hello”}

[Document(…), ..]

on_prompt_start

[模板名称]

{“question”: “hello”}

on_prompt_end

[模板名称]

{“question”: “hello”}

ChatPromptValue(messages: [SystemMessage, …])

除了标准事件之外,用户还可以分派自定义事件(请参阅下面的示例)。

自定义事件将仅在 API 的 v2 版本中显示!

自定义事件具有以下格式

属性

类型

描述

名称

str

用户定义的事件名称。

数据

Any

与事件关联的数据。 这可以是任何内容,但我们建议使其可 JSON 序列化。

以下是与上面所示标准事件关联的声明

format_docs:

def format_docs(docs: List[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])

format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

提示:

template = ChatPromptTemplate.from_messages(
    [("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})

示例

from langchain_core.runnables import RunnableLambda

async def reverse(s: str) -> str:
    return s[::-1]

chain = RunnableLambda(func=reverse)

events = [
    event async for event in chain.astream_events("hello", version="v2")
]

# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]

示例:分派自定义事件

from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)
参数
  • input (Any) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。

  • version (Literal['v1', 'v2']) – 要使用的模式版本,v2v1。 用户应使用 v2v1 用于向后兼容,将在 0.4.0 中弃用。 在 API 稳定之前,不会分配默认值。 自定义事件将仅在 v2 中显示。

  • include_names (Optional[Sequence[str]]) – 仅包括来自具有匹配名称的 runnable 的事件。

  • include_types (Optional[Sequence[str]]) – 仅包括来自具有匹配类型的 runnable 的事件。

  • include_tags (Optional[Sequence[str]]) – 仅包括来自具有匹配标签的 runnable 的事件。

  • exclude_names (Optional[Sequence[str]]) – 排除来自具有匹配名称的 runnable 的事件。

  • exclude_types (Optional[Sequence[str]]) – 排除来自具有匹配类型的 runnable 的事件。

  • exclude_tags (Optional[Sequence[str]]) – 排除来自具有匹配标签的 runnable 的事件。

  • kwargs (Any) – 要传递给 Runnable 的其他关键字参数。 这些参数将传递给 astream_log,因为 astream_events 的此实现构建在 astream_log 之上。

产生

StreamEvents 的异步流。

引发

NotImplementedError – 如果版本不是 v1v2

返回类型

AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]

batch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, List], Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List]]] = None, *, return_exceptions: bool = False, **kwargs: Any) List[str]

默认实现使用线程池执行器并行运行 invoke。

批处理的默认实现非常适用于 IO 绑定的可运行对象。

如果子类可以更高效地进行批处理;例如,如果底层 Runnable 使用支持批处理模式的 API,则应重写此方法。

参数
返回类型

List[str]

batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) Iterator[Tuple[int, Union[Output, Exception]]]

并行运行列表中输入的 invoke,并在完成时生成结果。

参数
  • inputs (Sequence[Input]) –

  • config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –

  • return_exceptions (bool) –

  • kwargs (Optional[Any]) –

返回类型

Iterator[Tuple[int, Union[Output, Exception]]]

configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output]

配置可在运行时设置的 Runnable 的备选项。

参数
  • which (ConfigurableField) – ConfigurableField 实例,将用于选择备选项。

  • default_key (str) – 如果未选择任何备选项,则使用的默认键。 默认为“default”。

  • prefix_keys (bool) – 是否将 ConfigurableField id 作为键的前缀。 默认为 False。

  • **kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – 键到 Runnable 实例或返回 Runnable 实例的可调用对象的字典。

返回

配置了备选项的新 Runnable。

返回类型

RunnableSerializable[Input, Output]

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-3-sonnet-20240229"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI()
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(
        configurable={"llm": "openai"}
    ).invoke("which organization created you?").content
)
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output]

在运行时配置特定的 Runnable 字段。

参数

**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – 要配置的 ConfigurableField 实例的字典。

返回

配置了字段的新 Runnable。

返回类型

RunnableSerializable[Input, Output]

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print(
    "max_tokens_20: ",
    model.invoke("tell me something about chess").content
)

# max_tokens = 200
print("max_tokens_200: ", model.with_config(
    configurable={"output_token_number": 200}
    ).invoke("tell me something about chess").content
)
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) LLMResult

向模型传递一系列提示,并返回生成结果。

此方法应利用支持批量 API 的模型的批量调用。

当您想要执行以下操作时,请使用此方法
  1. 利用批量调用,

  2. 需要比仅生成的最佳值更多的模型输出,

  3. 正在构建与底层语言模型类型无关的链

    类型(例如,纯文本完成模型与聊天模型)。

参数
  • prompts (List[str]) – 字符串 prompt 列表。

  • stop (Optional[List[str]]) – 生成时使用的停止词。模型输出将在首次出现这些子字符串中的任何一个时被截断。

  • callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – 要传递的回调。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。

  • tags (Optional[Union[List[str], List[List[str]]]]) – 与每个 prompt 关联的标签列表。 如果提供,则列表的长度必须与 prompts 列表的长度匹配。

  • metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – 与每个 prompt 关联的元数据字典列表。 如果提供,则列表的长度必须与 prompts 列表的长度匹配。

  • run_name (Optional[Union[str, List[str]]]) – 与每个 prompt 关联的运行名称列表。 如果提供,则列表的长度必须与 prompts 列表的长度匹配。

  • run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – 与每个 prompt 关联的运行 ID 列表。 如果提供,则列表的长度必须与 prompts 列表的长度匹配。

  • **kwargs (Any) – 任意额外的关键字参数。这些通常会传递给模型提供商 API 调用。

返回

一个 LLMResult,其中包含每个输入

prompt 的候选 Generations 列表以及其他模型提供商特定的输出。

返回类型

LLMResult

generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) LLMResult

向模型传递一系列提示,并返回模型生成结果。

此方法应利用支持批量 API 的模型的批量调用。

当您想要执行以下操作时,请使用此方法
  1. 利用批量调用,

  2. 需要比仅生成的最佳值更多的模型输出,

  3. 正在构建与底层语言模型类型无关的链

    类型(例如,纯文本完成模型与聊天模型)。

参数
  • prompts (List[PromptValue]) – PromptValue 列表。 PromptValue 是一个可以转换为匹配任何语言模型格式的对象(纯文本生成模型的字符串和聊天模型的 BaseMessages)。

  • stop (Optional[List[str]]) – 生成时使用的停止词。模型输出将在首次出现这些子字符串中的任何一个时被截断。

  • callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – 要传递的回调。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。

  • **kwargs (Any) – 任意额外的关键字参数。这些通常会传递给模型提供商 API 调用。

返回

一个 LLMResult,其中包含每个输入

prompt 的候选 Generations 列表以及其他模型提供商特定的输出。

返回类型

LLMResult

get_num_tokens(text: str) int

获取文本中存在的 token 数量。

用于检查输入是否适合模型的上下文窗口。

参数

text (str) – 要进行 token 化的字符串输入。

返回

文本中的 token 整数数量。

返回类型

int

get_num_tokens_from_messages(messages: List[BaseMessage]) int

获取消息中的 token 数量。

用于检查输入是否适合模型的上下文窗口。

参数

messages (List[BaseMessage]) – 要进行 token 化的消息输入。

返回

消息中 token 数量的总和。

返回类型

int

get_token_ids(text: str) List[int]

返回文本中 token 的有序 ID。

参数

text (str) – 要进行 token 化的字符串输入。

返回

与文本中的 token 相对应的 ID 列表,按照它们在文本中出现的顺序排列

在文本中。

返回类型

List[int]

invoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) str

将单个输入转换为输出。覆盖以实现。

参数
  • input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 调用 Runnable 时使用的配置。该配置支持标准键,如用于跟踪目的的“tags”、“metadata”,用于控制并行执行多少工作的“max_concurrency”以及其他键。请参阅 RunnableConfig 以获取更多详细信息。

  • stop (Optional[List[str]]) –

  • kwargs (Any) –

返回

Runnable 的输出。

返回类型

str

predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str

Deprecated since version langchain-core==0.1.7: 请使用 invoke 代替。

参数
  • text (str) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

返回类型

str

predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage

Deprecated since version langchain-core==0.1.7: 请使用 invoke 代替。

参数
  • messages (List[BaseMessage]) –

  • stop (Optional[Sequence[str]]) –

  • kwargs (Any) –

返回类型

BaseMessage

save(file_path: Union[Path, str]) None

保存 LLM。

参数

file_path (Union[Path, str]) – 保存 LLM 的文件路径。

引发

ValueError – 如果文件路径不是字符串或 Path 对象。

返回类型

None

示例: .. code-block:: python

llm.save(file_path=”path/llm.yaml”)

stream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) Iterator[str]

流式处理的默认实现,它调用 invoke。如果子类支持流式输出,则应覆盖此方法。

参数
  • input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。 默认为 None。

  • kwargs (Any) – 要传递给 Runnable 的其他关键字参数。

  • stop (Optional[List[str]]) –

产生

Runnable 的输出。

返回类型

Iterator[str]

to_json() Union[SerializedConstructor, SerializedNotImplemented]

将 Runnable 序列化为 JSON。

返回

Runnable 的 JSON 可序列化表示形式。

返回类型

Union[SerializedConstructor, SerializedNotImplemented]

with_structured_output(schema: Union[Dict, Type[BaseModel]], **kwargs: Any) Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]

此类上未实现。

参数
  • schema (Union[Dict, Type[BaseModel]]) –

  • kwargs (Any) –

返回类型

Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]

Aphrodite 使用示例