langchain_cohere.llms
.Cohere¶
注意
Cohere 实现了标准的 Runnable 接口
。 🏃
Runnable 接口
在可运行对象上还有其他可用方法,例如 with_types
、 with_retry
、 assign
、 bind
、 get_graph
等。
- class langchain_cohere.llms.Cohere[source]¶
基类:
LLM
,BaseCohere
Cohere 大型语言模型。
要使用,您应该安装
cohere
python 包,并将环境变量COHERE_API_KEY
设置为您的 API 密钥,或者将其作为命名参数传递给构造函数。示例
from langchain_cohere import Cohere cohere = Cohere(cohere_api_key="my-api-key")
- param base_url: Optional[str] = None¶
覆盖默认的 Cohere API URL。
- param cache: Union[BaseCache, bool, None] = None¶
是否缓存响应。
如果为 true,将使用全局缓存。
如果为 false,将不使用缓存。
如果为 None,如果设置了全局缓存,则使用全局缓存,否则不使用缓存。
如果是 BaseCache 的实例,将使用提供的缓存。
模型流式处理方法目前不支持缓存。
- param callback_manager: Optional[BaseCallbackManager] = None¶
[已弃用]
- param callbacks: Callbacks = None¶
添加到运行轨迹的回调。
- param cohere_api_key: Optional[SecretStr] = None¶
Cohere API 密钥。如果未提供,将从环境变量中读取。
- 约束
type = string
writeOnly = True
format = password
- param custom_get_token_ids: Optional[Callable[[str], List[int]]] = None¶
用于计算 token 的可选编码器。
- param frequency_penalty: Optional[float] = None¶
根据频率惩罚重复的 token。介于 0 和 1 之间。
- param k: Optional[int] = None¶
每步要考虑的最有可能的 token 数量。
- param max_retries: int = 10¶
生成时要进行的最大重试次数。
- param max_tokens: Optional[int] = None¶
表示每次生成要预测的 token 数量。
- param metadata: Optional[Dict[str, Any]] = None¶
要添加到运行轨迹的元数据。
- param model: Optional[str] = None¶
要使用的模型名称。
- param p: Optional[int] = None¶
每步要考虑的 token 的总概率质量。
- param presence_penalty: Optional[float] = None¶
惩罚重复的 token。介于 0 和 1 之间。
- param stop: Optional[List[str]] = None¶
- param streaming: bool = False¶
是否流式传输结果。
- param tags: Optional[List[str]] = None¶
要添加到运行轨迹的标签。
- param temperature: Optional[float] = None¶
一个非负浮点数,用于调整生成过程中的随机性程度。
- param timeout_seconds: Optional[float] = 300¶
Cohere API 请求的超时秒数。
- param truncate: Optional[str] = None¶
指定客户端如何处理超过最大 token 长度的输入:从 START、END 或 NONE 截断
- param user_agent: str = 'langchain:partner'¶
发出请求的应用程序的标识符。
- param verbose [Optional]¶
是否打印输出响应文本。
- __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) str ¶
Deprecated since version langchain-core==0.1.7: 请使用
invoke
代替。检查缓存并在给定的提示和输入上运行 LLM。
- 参数
prompt (str) – 要从中生成的提示。
stop (Optional[List[str]]) – 生成时使用的停止词。模型输出在第一次出现任何这些子字符串时被截断。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 要传递的回调。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。
tags (Optional[List[str]]) – 与提示关联的标签列表。
metadata (Optional[Dict[str, Any]]) – 与提示关联的元数据。
**kwargs (Any) – 任意额外的关键字参数。这些通常传递给模型提供商 API 调用。
- 返回
生成的文本。
- 引发
ValueError – 如果提示不是字符串。
- 返回类型
str
- async abatch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) List[str] ¶
默认实现使用 asyncio.gather 并行运行 ainvoke。
批量处理的默认实现对于 IO 绑定的可运行对象效果良好。
如果子类可以更有效地进行批量处理,则应覆盖此方法;例如,如果底层 Runnable 使用支持批量模式的 API。
- 参数
inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]]) – Runnable 的输入列表。
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – 调用 Runnable 时要使用的配置。该配置支持标准键,例如用于跟踪目的的 ‘tags’、‘metadata’,用于控制并行执行多少工作的 ‘max_concurrency’ 以及其他键。有关更多详细信息,请参阅 RunnableConfig。默认为 None。
return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。
kwargs (Any) – 要传递给 Runnable 的其他关键字参数。
- 返回
来自 Runnable 的输出列表。
- 返回类型
List[str]
- async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]] ¶
并行运行 ainvoke 处理输入列表,并在结果完成时产生结果。
- 参数
inputs (Sequence[Input]) – Runnable 的输入列表。
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – 调用 Runnable 时要使用的配置。该配置支持标准键,例如用于跟踪目的的 ‘tags’、‘metadata’,用于控制并行执行多少工作的 ‘max_concurrency’ 以及其他键。有关更多详细信息,请参阅 RunnableConfig。默认为 None。默认为 None。
return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。
kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。
- 产生
输入索引和来自 Runnable 的输出的元组。
- 返回类型
AsyncIterator[Tuple[int, Union[Output, Exception]]]
- async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) LLMResult ¶
异步地将一系列提示传递给模型并返回生成结果。
此方法应针对暴露批量 API 的模型使用批量调用。
- 当您想要
利用批量调用时,请使用此方法,
需要从模型获得比仅仅是最佳生成值更多的输出时,请使用此方法,
- 正在构建与底层语言模型无关的链时
类型(例如,纯文本完成模型与聊天模型)。
- 参数
prompts (List[str]) – 字符串提示列表。
stop (Optional[List[str]]) – 生成时使用的停止词。模型输出在第一次出现任何这些子字符串时被截断。
callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – 回调函数,用于传递。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。
tags (Optional[Union[List[str], List[List[str]]]]) – 与每个提示关联的标签列表。如果提供,则列表的长度必须与提示列表的长度匹配。
metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – 与每个提示关联的元数据字典列表。如果提供,则列表的长度必须与提示列表的长度匹配。
run_name (Optional[Union[str, List[str]]]) – 与每个提示关联的运行名称列表。如果提供,则列表的长度必须与提示列表的长度匹配。
run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – 与每个提示关联的运行 ID 列表。如果提供,则列表的长度必须与提示列表的长度匹配。
**kwargs (Any) – 任意额外的关键字参数。这些通常传递给模型提供商 API 调用。
- 返回
- 一个 LLMResult,其中包含每个输入提示的候选 Generations 列表以及额外的模型提供商特定的输出。
prompt 和额外的模型提供商特定的输出。
- 返回类型
- async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) LLMResult ¶
异步地传递一系列提示并返回模型生成结果。
此方法应针对暴露批量 API 的模型使用批量调用。
- 当您想要
利用批量调用时,请使用此方法,
需要从模型获得比仅仅是最佳生成值更多的输出时,请使用此方法,
- 正在构建与底层语言模型无关的链时
类型(例如,纯文本完成模型与聊天模型)。
- 参数
prompts (List[PromptValue]) – PromptValue 列表。PromptValue 是一个可以转换为匹配任何语言模型格式的对象(纯文本生成模型的字符串和聊天模型的基础消息)。
stop (Optional[List[str]]) – 生成时使用的停止词。模型输出在第一次出现任何这些子字符串时被截断。
callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – 回调函数,用于传递。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。
**kwargs (Any) – 任意额外的关键字参数。这些通常传递给模型提供商 API 调用。
- 返回
- 一个 LLMResult,其中包含每个输入提示的候选 Generations 列表以及额外的模型提供商特定的输出。
prompt 和额外的模型提供商特定的输出。
- 返回类型
- async ainvoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) str ¶
ainvoke
的默认实现,从线程调用invoke
。即使 Runnable 没有实现
invoke
的原生异步版本,默认实现也允许使用异步代码。如果子类可以异步运行,则应覆盖此方法。
- 参数
input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) –
config (Optional[RunnableConfig]) –
stop (Optional[List[str]]) –
kwargs (Any) –
- 返回类型
str
- async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str ¶
Deprecated since version langchain-core==0.1.7: 请使用
ainvoke
代替。- 参数
text (str) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- 返回类型
str
- async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage ¶
Deprecated since version langchain-core==0.1.7: 请使用
ainvoke
代替。- 参数
messages (List[BaseMessage]) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- 返回类型
- as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool ¶
Beta
此 API 处于 Beta 阶段,未来可能会发生变化。
从 Runnable 创建一个 BaseTool。
as_tool
将从 Runnable 实例化一个带有名称、描述和args_schema
的 BaseTool。 在可能的情况下,模式从runnable.get_input_schema
推断。 或者(例如,如果 Runnable 接受 dict 作为输入,并且未键入特定的 dict 键),可以使用args_schema
直接指定模式。 您也可以传递arg_types
以仅指定必需的参数及其类型。- 参数
args_schema (Optional[Type[BaseModel]]) – 工具的模式。 默认为 None。
name (Optional[str]) – 工具的名称。 默认为 None。
description (Optional[str]) – 工具的描述。 默认为 None。
arg_types (Optional[Dict[str, Type]]) – 参数名称到类型的字典。 默认为 None。
- 返回
一个 BaseTool 实例。
- 返回类型
类型化字典输入
from typing import List from typing_extensions import TypedDict from langchain_core.runnables import RunnableLambda class Args(TypedDict): a: int b: List[int] def f(x: Args) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool() as_tool.invoke({"a": 3, "b": [1, 2]})
dict
输入,通过args_schema
指定模式from typing import Any, Dict, List from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) class FSchema(BaseModel): """Apply a function to an integer and list of integers.""" a: int = Field(..., description="Integer") b: List[int] = Field(..., description="List of ints") runnable = RunnableLambda(f) as_tool = runnable.as_tool(FSchema) as_tool.invoke({"a": 3, "b": [1, 2]})
dict
输入,通过arg_types
指定模式from typing import Any, Dict, List from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]}) as_tool.invoke({"a": 3, "b": [1, 2]})
字符串输入
from langchain_core.runnables import RunnableLambda def f(x: str) -> str: return x + "a" def g(x: str) -> str: return x + "z" runnable = RunnableLambda(f) | g as_tool = runnable.as_tool() as_tool.invoke("b")
0.2.14 版本中的新功能。
- async astream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) AsyncIterator[str] ¶
astream
的默认实现,它调用ainvoke
。 如果子类支持流式输出,则应覆盖此方法。- 参数
input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。 默认为 None。
kwargs (Any) – 要传递给 Runnable 的其他关键字参数。
stop (Optional[List[str]]) –
- 产生
Runnable 的输出。
- 返回类型
AsyncIterator[str]
- astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]] ¶
Beta
此 API 处于 Beta 阶段,未来可能会发生变化。
生成事件流。
用于创建 StreamEvents 的迭代器,StreamEvents 提供有关 Runnable 进度的实时信息,包括来自中间结果的 StreamEvents。
StreamEvent 是一个具有以下模式的字典
event
: str - 事件名称的格式为:格式:on_[runnable_type]_(start|stream|end)。
name
: str - 生成事件的 Runnable 的名称。run_id
: str - 与发出事件的 Runnable 的给定执行关联的随机生成的 ID。 作为父 Runnable 执行的一部分调用的子 Runnable 被分配其自己的唯一 ID。the Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
parent_ids
: List[str] - 生成事件的父 runnable 的 ID 列表。generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
tags
: Optional[List[str]] - 生成事件的 Runnable 的标签。the event.
metadata
: Optional[Dict[str, Any]] - Runnable 的元数据that generated the event.
data
: Dict[str, Any]
下面是一个表格,说明了各种链可能发出的一些事件。 为了简洁起见,元数据字段已从表格中省略。 链定义已包含在表格之后。
注意 此参考表适用于 V2 版本的模式。
事件
名称
块
输入
输出
on_chat_model_start
[模型名称]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[模型名称]
AIMessageChunk(content=”hello”)
on_chat_model_end
[模型名称]
{“messages”: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=”hello world”)
on_llm_start
[模型名称]
{‘input’: ‘hello’}
on_llm_stream
[模型名称]
‘Hello’
on_llm_end
[模型名称]
‘Hello human!’
on_chain_start
format_docs
on_chain_stream
format_docs
“hello world!, goodbye world!”
on_chain_end
format_docs
[Document(…)]
“hello world!, goodbye world!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[检索器名称]
{“query”: “hello”}
on_retriever_end
[检索器名称]
{“query”: “hello”}
[Document(…), ..]
on_prompt_start
[模板名称]
{“question”: “hello”}
on_prompt_end
[模板名称]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
除了标准事件之外,用户还可以调度自定义事件(请参阅下面的示例)。
自定义事件将仅在 API 的 v2 版本中显示!
自定义事件具有以下格式
属性
类型
描述
名称
str
事件的用户自定义名称。
数据
任意类型
与事件关联的数据。这可以是任何内容,但我们建议使其可JSON序列化。
以下是与上面显示的标准事件关联的声明
format_docs:
def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool:
@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
提示:
template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
示例
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
示例:分发自定义事件
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- 参数
input (Any) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。
version (Literal['v1', 'v2']) – 要使用的模式版本,可以是 v2 或 v1。用户应使用 v2。v1 用于向后兼容,将在 0.4.0 版本中弃用。在 API 稳定之前,不会分配默认值。自定义事件将仅在 v2 中显示。
include_names (Optional[Sequence[str]]) – 仅包括来自具有匹配名称的 runnables 的事件。
include_types (Optional[Sequence[str]]) – 仅包括来自具有匹配类型的 runnables 的事件。
include_tags (Optional[Sequence[str]]) – 仅包括来自具有匹配标签的 runnables 的事件。
exclude_names (Optional[Sequence[str]]) – 排除来自具有匹配名称的 runnables 的事件。
exclude_types (Optional[Sequence[str]]) – 排除来自具有匹配类型的 runnables 的事件。
exclude_tags (Optional[Sequence[str]]) – 排除来自具有匹配标签的 runnables 的事件。
kwargs (Any) – 要传递给 Runnable 的其他关键字参数。这些参数将传递给 astream_log,因为 astream_events 的此实现构建于 astream_log 之上。
- 产生
StreamEvents 的异步流。
- 引发
NotImplementedError – 如果版本不是 v1 或 v2。
- 返回类型
AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]
- batch(inputs: List[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) List[str] ¶
默认实现使用线程池执行器并行运行 invoke。
批量处理的默认实现对于 IO 绑定的可运行对象效果良好。
如果子类可以更有效地进行批量处理,则应覆盖此方法;例如,如果底层 Runnable 使用支持批量模式的 API。
- 参数
inputs (List[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Any) –
- 返回类型
List[str]
- batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) Iterator[Tuple[int, Union[Output, Exception]]] ¶
在输入列表上并行运行 invoke,并在结果完成时生成结果。
- 参数
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- 返回类型
Iterator[Tuple[int, Union[Output, Exception]]]
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output] ¶
配置可在运行时设置的 Runnables 的备选项。
- 参数
which (ConfigurableField) – 将用于选择备选项的 ConfigurableField 实例。
default_key (str) – 如果未选择备选项,则使用的默认键。默认为“default”。
prefix_keys (bool) – 是否使用 ConfigurableField id 作为键的前缀。默认为 False。
**kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – 键到 Runnable 实例或返回 Runnable 实例的可调用对象的字典。
- 返回
配置了备选项的新 Runnable。
- 返回类型
RunnableSerializable[Input, Output]
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content )
- configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output] ¶
在运行时配置特定的 Runnable 字段。
- 参数
**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – 要配置的 ConfigurableField 实例的字典。
- 返回
配置了字段的新 Runnable。
- 返回类型
RunnableSerializable[Input, Output]
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content )
- generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler],BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler],BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, run_id: Optional[Union[UUID, List[Optional[UUID]]]] = None, **kwargs: Any) LLMResult ¶
将一系列提示传递给模型并返回生成结果。
此方法应针对暴露批量 API 的模型使用批量调用。
- 当您想要
利用批量调用时,请使用此方法,
需要从模型获得比仅仅是最佳生成值更多的输出时,请使用此方法,
- 正在构建与底层语言模型无关的链时
类型(例如,纯文本完成模型与聊天模型)。
- 参数
prompts (List[str]) – 字符串提示列表。
stop (Optional[List[str]]) – 生成时使用的停止词。模型输出在第一次出现任何这些子字符串时被截断。
callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – 回调函数,用于传递。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。
tags (Optional[Union[List[str], List[List[str]]]]) – 与每个提示关联的标签列表。如果提供,则列表的长度必须与提示列表的长度匹配。
metadata (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]) – 与每个提示关联的元数据字典列表。如果提供,则列表的长度必须与提示列表的长度匹配。
run_name (Optional[Union[str, List[str]]]) – 与每个提示关联的运行名称列表。如果提供,则列表的长度必须与提示列表的长度匹配。
run_id (Optional[Union[UUID, List[Optional[UUID]]]]) – 与每个提示关联的运行 ID 列表。如果提供,则列表的长度必须与提示列表的长度匹配。
**kwargs (Any) – 任意额外的关键字参数。这些通常传递给模型提供商 API 调用。
- 返回
- 一个 LLMResult,其中包含每个输入提示的候选 Generations 列表以及额外的模型提供商特定的输出。
prompt 和额外的模型提供商特定的输出。
- 返回类型
- generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler],BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler],BaseCallbackManager]]]] = None, **kwargs: Any) LLMResult ¶
将一系列提示传递给模型并返回模型生成结果。
此方法应针对暴露批量 API 的模型使用批量调用。
- 当您想要
利用批量调用时,请使用此方法,
需要从模型获得比仅仅是最佳生成值更多的输出时,请使用此方法,
- 正在构建与底层语言模型无关的链时
类型(例如,纯文本完成模型与聊天模型)。
- 参数
prompts (List[PromptValue]) – PromptValue 列表。PromptValue 是一个可以转换为匹配任何语言模型格式的对象(纯文本生成模型的字符串和聊天模型的基础消息)。
stop (Optional[List[str]]) – 生成时使用的停止词。模型输出在第一次出现任何这些子字符串时被截断。
callbacks (Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]]) – 回调函数,用于传递。用于在整个生成过程中执行额外的功能,例如日志记录或流式传输。
**kwargs (Any) – 任意额外的关键字参数。这些通常传递给模型提供商 API 调用。
- 返回
- 一个 LLMResult,其中包含每个输入提示的候选 Generations 列表以及额外的模型提供商特定的输出。
prompt 和额外的模型提供商特定的输出。
- 返回类型
- get_num_tokens(text: str) int ¶
获取文本中存在的 token 数量。
用于检查输入是否适合模型的上下文窗口。
- 参数
text (str) – 要标记化的字符串输入。
- 返回
文本中 token 的整数数量。
- 返回类型
int
- get_num_tokens_from_messages(messages: List[BaseMessage]) int ¶
获取消息中的 token 数量。
用于检查输入是否适合模型的上下文窗口。
- 参数
messages (List[BaseMessage]) – 要标记化的消息输入。
- 返回
跨消息的 token 数量的总和。
- 返回类型
int
- get_token_ids(text: str) List[int] ¶
返回文本中 token 的有序 ID。
- 参数
text (str) – 要标记化的字符串输入。
- 返回
- 与文本中的 token 相对应的 ID 列表,按它们在文本中出现的顺序排列
在文本中。
- 返回类型
List[int]
- invoke(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) str ¶
将单个输入转换为输出。覆盖以实现。
- 参数
input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) – Runnable 的输入。
config (Optional[RunnableConfig]) – 调用 Runnable 时要使用的配置。该配置支持用于跟踪目的的标准键,如“tags”、“metadata”,用于控制并行执行多少工作的“max_concurrency”,以及其他键。有关更多详细信息,请参阅 RunnableConfig。
stop (Optional[List[str]]) –
kwargs (Any) –
- 返回
Runnable 的输出。
- 返回类型
str
- predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str ¶
Deprecated since version langchain-core==0.1.7: 请使用
invoke
代替。- 参数
text (str) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- 返回类型
str
- predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage ¶
Deprecated since version langchain-core==0.1.7: 请使用
invoke
代替。- 参数
messages (List[BaseMessage]) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- 返回类型
- save(file_path: Union[Path, str]) None ¶
保存 LLM。
- 参数
file_path (Union[Path, str]) – LLM 保存到的文件路径。
- 引发
ValueError – 如果文件路径不是字符串或 Path 对象。
- 返回类型
无
示例: .. code-block:: python
llm.save(file_path=”path/llm.yaml”)
- stream(input: Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) Iterator[str] ¶
流的默认实现,它调用 invoke。如果子类支持流式输出,则应重写此方法。
- 参数
input (Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]]) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。 默认为 None。
kwargs (Any) – 要传递给 Runnable 的其他关键字参数。
stop (Optional[List[str]]) –
- 产生
Runnable 的输出。
- 返回类型
Iterator[str]
- to_json() Union[SerializedConstructor, SerializedNotImplemented] ¶
将 Runnable 序列化为 JSON。
- 返回
Runnable 的 JSON 可序列化表示形式。
- 返回类型
- with_structured_output(schema: Union[Dict, Type[BaseModel]], **kwargs: Any) Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]] ¶
在此类中未实现。
- 参数
schema (Union[Dict, Type[BaseModel]]) –
kwargs (Any) –
- 返回类型
Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]]