langchain_experimental.fallacy_removal.base
.FallacyChain¶
注意
FallacyChain 实现了标准的 Runnable Interface
。 🏃
Runnable Interface
具有在 runnables 上可用的其他方法,例如 with_types
, with_retry
, assign
, bind
, get_graph
,等等。
- class langchain_experimental.fallacy_removal.base.FallacyChain[源代码]¶
基类:
Chain
用于应用逻辑谬误评估的 Chain。
它模仿了宪法 AI 并采用相同格式,但应用逻辑谬误作为通用规则来移除输出中的内容。
示例
from langchain_community.llms import OpenAI from langchain.chains import LLMChain from langchain_experimental.fallacy import FallacyChain from langchain_experimental.fallacy_removal.models import LogicalFallacy llm = OpenAI() qa_prompt = PromptTemplate( template="Q: {question} A:", input_variables=["question"], ) qa_chain = LLMChain(llm=llm, prompt=qa_prompt) fallacy_chain = FallacyChain.from_llm( llm=llm, chain=qa_chain, logical_fallacies=[ LogicalFallacy( fallacy_critique_request="Tell if this answer meets criteria.", fallacy_revision_request= "Give an answer that meets better criteria.", ) ], ) fallacy_chain.run(question="How do I know if the earth is round?")
- param callback_manager: Optional[BaseCallbackManager] = None¶
[已弃用] 请改用 callbacks。
- param callbacks: Callbacks = None¶
回调处理程序(或回调管理器)的可选列表。默认为 None。回调处理程序在调用链的整个生命周期中被调用,从 on_chain_start 开始,到 on_chain_end 或 on_chain_error 结束。每个自定义链可以选择性地调用其他回调方法,有关完整详细信息,请参阅回调文档。
- param logical_fallacies: List[LogicalFallacy] [必需]¶
- param memory: Optional[BaseMemory] = None¶
可选的内存对象。默认为 None。内存是一个类,它在每个链的开始和结束时被调用。在开始时,内存加载变量并在链中传递它们。在结束时,它保存任何返回的变量。有许多不同类型的内存 - 请参阅内存文档以获取完整目录。
- param metadata: Optional[Dict[str, Any]] = None¶
与链关联的可选元数据。默认为 None。此元数据将与对此链的每次调用关联,并作为参数传递给 callbacks 中定义的处理程序。您可以使用这些元数据来识别链的特定实例及其用例,例如。
- param return_intermediate_steps: bool = False¶
- param tags: Optional[List[str]] = None¶
与链关联的可选标签列表。默认为 None。这些标签将与对此链的每次调用关联,并作为参数传递给 callbacks 中定义的处理程序。您可以使用这些标签来识别链的特定实例及其用例,例如。
- param verbose: bool [可选]¶
是否在 verbose 模式下运行。在 verbose 模式下,一些中间日志将被打印到控制台。默认为全局 verbose 值,可通过 langchain.globals.get_verbose() 访问。
- __call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) Dict[str, Any] ¶
Deprecated since version langchain==0.1.0: 使用
invoke
代替。执行链。
- 参数
inputs (Union[Dict[str, Any], Any]) – 输入字典,或者当链只期望一个参数时,为单个输入。应包含 Chain.input_keys 中指定的所有输入,但链的内存将设置的输入除外。
return_only_outputs (bool) – 是否仅在响应中返回输出。如果为 True,则仅返回由此链生成的新键。如果为 False,则将返回输入键和由此链生成的新键。默认为 False。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 用于此链运行的回调。这些回调将添加到构造期间传递给链的回调之外,但只有这些运行时回调将传播到对其他对象的调用。
tags (Optional[List[str]]) – 要传递给所有回调的字符串标签列表。这些标签将添加到构造期间传递给链的标签之外,但只有这些运行时标签将传播到对其他对象的调用。
metadata (Optional[Dict[str, Any]]) – 与链关联的可选元数据。默认为 None
include_run_info (bool) – 是否在响应中包含运行信息。默认为 False。
run_name (Optional[str]) –
- 返回值
- 命名输出的字典。应包含中指定的所有输出
Chain.output_keys.
- 返回类型
Dict[str, Any]
- async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
默认实现使用 asyncio.gather 并行运行 ainvoke。
batch 的默认实现对于 IO 绑定的 runnables 效果良好。
如果子类可以更有效地进行批量处理,则应重写此方法;例如,如果底层 Runnable 使用支持批量模式的 API。
- 参数
inputs (List[Input]) – Runnable 的输入列表。
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – 调用 Runnable 时要使用的配置。该配置支持标准键,如用于跟踪目的的 'tags'、'metadata',用于控制并行执行多少工作的 'max_concurrency',以及其他键。有关更多详细信息,请参阅 RunnableConfig。默认为 None。
return_exceptions (bool) – 是否返回异常而不是引发它们。默认为 False。
kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。
- 返回值
Runnable 的输出列表。
- 返回类型
List[Output]
- async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]] ¶
在一系列输入上并行运行 ainvoke,并在结果完成时生成结果。
- 参数
inputs (Sequence[Input]) – Runnable 的输入列表。
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – 调用 Runnable 时要使用的配置。该配置支持标准键,如用于跟踪目的的 'tags'、'metadata',用于控制并行执行多少工作的 'max_concurrency',以及其他键。有关更多详细信息,请参阅 RunnableConfig。默认为 None。默认为 None。
return_exceptions (bool) – 是否返回异常而不是引发它们。默认为 False。
kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。
- Yields:
输入索引和 Runnable 输出的元组。
- 返回类型
AsyncIterator[Tuple[int, Union[Output, Exception]]]
- async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) Dict[str, Any] ¶
Deprecated since version langchain==0.1.0: 使用
ainvoke
代替。异步执行链。
- 参数
inputs (Union[Dict[str, Any], Any]) – 输入字典,或者当链只期望一个参数时,为单个输入。应包含 Chain.input_keys 中指定的所有输入,但链的内存将设置的输入除外。
return_only_outputs (bool) – 是否仅在响应中返回输出。如果为 True,则仅返回由此链生成的新键。如果为 False,则将返回输入键和由此链生成的新键。默认为 False。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 用于此链运行的回调。这些回调将添加到构造期间传递给链的回调之外,但只有这些运行时回调将传播到对其他对象的调用。
tags (Optional[List[str]]) – 要传递给所有回调的字符串标签列表。这些标签将添加到构造期间传递给链的标签之外,但只有这些运行时标签将传播到对其他对象的调用。
metadata (Optional[Dict[str, Any]]) – 与链关联的可选元数据。默认为 None
include_run_info (bool) – 是否在响应中包含运行信息。默认为 False。
run_name (Optional[str]) –
- 返回值
- 命名输出的字典。应包含中指定的所有输出
Chain.output_keys.
- 返回类型
Dict[str, Any]
- async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) Dict[str, Any] ¶
ainvoke 的默认实现,从线程调用 invoke。
即使 Runnable 没有实现 invoke 的原生异步版本,默认实现也允许使用异步代码。
如果子类可以异步运行,则应重写此方法。
- 参数
input (Dict[str, Any]) –
config (Optional[RunnableConfig]) –
kwargs (Any) –
- 返回类型
Dict[str, Any]
- apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) List[Dict[str, str]] ¶
Deprecated since version langchain==0.1.0: 使用
batch
代替。对列表中的所有输入调用链。
- 参数
input_list (List[Dict[str, Any]]) –
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
- 返回类型
List[Dict[str, str]]
- async aprep_inputs(inputs: Union[Dict[str, Any], Any]) Dict[str, str] ¶
准备链输入,包括从内存中添加输入。
- 参数
inputs (Union[Dict[str, Any], Any]) – 原始输入的字典,或者当链只期望一个参数时的单个输入。应该包含 Chain.input_keys 中指定的所有输入,除了将由链的内存设置的输入。
- 返回值
包含所有输入的字典,包括链的内存添加的输入。
- 返回类型
Dict[str, str]
- async aprep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) Dict[str, str] ¶
验证和准备链输出,并将关于此运行的信息保存到内存中。
- 参数
inputs (Dict[str, str]) – 链输入的字典,包括链内存添加的任何输入。
outputs (Dict[str, str]) – 初始链输出的字典。
return_only_outputs (bool) – 是否仅返回链输出。如果为 False,输入也会添加到最终输出中。
- 返回值
最终链输出的字典。
- 返回类型
Dict[str, str]
- async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) Any ¶
Deprecated since version langchain==0.1.0: 使用
ainvoke
代替。执行链的便捷方法。
此方法与 Chain.__call__ 之间的主要区别在于,此方法期望输入直接作为位置参数或关键字参数传入,而 Chain.__call__ 期望单个输入字典包含所有输入
- 参数
*args (Any) – 如果链期望单个输入,则可以作为唯一的位置参数传入。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 用于此链运行的回调。这些回调将添加到构造期间传递给链的回调之外,但只有这些运行时回调将传播到对其他对象的调用。
tags (Optional[List[str]]) – 要传递给所有回调的字符串标签列表。这些标签将添加到构造期间传递给链的标签之外,但只有这些运行时标签将传播到对其他对象的调用。
**kwargs (Any) – 如果链期望多个输入,则可以直接作为关键字参数传入。
metadata (Optional[Dict[str, Any]]) –
**kwargs –
- 返回值
链输出。
- 返回类型
Any
示例
# Suppose we have a single-input chain that takes a 'question' string: await chain.arun("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..." await chain.arun(question=question, context=context) # -> "The temperature in Boise is..."
- as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool ¶
Beta
此 API 处于 beta 阶段,未来可能会发生变化。
从 Runnable 创建 BaseTool。
as_tool
将从 Runnable 实例化一个具有名称、描述和args_schema
的 BaseTool。在可能的情况下,模式是从runnable.get_input_schema
推断出来的。或者(例如,如果 Runnable 接受字典作为输入,并且未键入特定的字典键),可以使用args_schema
直接指定模式。您也可以传递arg_types
以仅指定必需的参数及其类型。- 参数
args_schema (Optional[Type[BaseModel]]) – 工具的模式。默认为 None。
name (Optional[str]) – 工具的名称。默认为 None。
description (Optional[str]) – 工具的描述。默认为 None。
arg_types (Optional[Dict[str, Type]]) – 参数名称到类型的字典。默认为 None。
- 返回值
BaseTool 实例。
- 返回类型
类型化字典输入
from typing import List from typing_extensions import TypedDict from langchain_core.runnables import RunnableLambda class Args(TypedDict): a: int b: List[int] def f(x: Args) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool() as_tool.invoke({"a": 3, "b": [1, 2]})
dict
输入,通过args_schema
指定模式from typing import Any, Dict, List from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) class FSchema(BaseModel): """Apply a function to an integer and list of integers.""" a: int = Field(..., description="Integer") b: List[int] = Field(..., description="List of ints") runnable = RunnableLambda(f) as_tool = runnable.as_tool(FSchema) as_tool.invoke({"a": 3, "b": [1, 2]})
dict
输入,通过arg_types
指定模式from typing import Any, Dict, List from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]}) as_tool.invoke({"a": 3, "b": [1, 2]})
字符串输入
from langchain_core.runnables import RunnableLambda def f(x: str) -> str: return x + "a" def g(x: str) -> str: return x + "z" runnable = RunnableLambda(f) | g as_tool = runnable.as_tool() as_tool.invoke("b")
0.2.14 版本新增。
- async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output] ¶
astream 的默认实现,它调用 ainvoke。如果子类支持流式输出,则应覆盖此方法。
- 参数
input (Input) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。
kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。
- Yields:
Runnable 的输出。
- 返回类型
AsyncIterator[Output]
- astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]] ¶
Beta
此 API 处于 beta 阶段,未来可能会发生变化。
生成事件流。
用于创建 StreamEvents 的迭代器,该迭代器提供关于 Runnable 进度的实时信息,包括来自中间结果的 StreamEvents。
StreamEvent 是一个具有以下模式的字典
event
: str - 事件名称的格式为格式:on_[runnable_type]_(start|stream|end)。
name
: str - 生成事件的 Runnable 的名称。run_id
: str - 随机生成的 ID,与给定执行的发出事件的 Runnable 相关联。作为父 Runnable 执行的一部分调用的子 Runnable 将被分配其自己的唯一 ID。
parent_ids
: List[str] - 生成事件的父 runnable 的 ID 列表。根 Runnable 将有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。
tags
: Optional[List[str]] - 生成事件的 Runnable 的标签。
metadata
: Optional[Dict[str, Any]] - Runnable 的元数据生成事件的 Runnable 的元数据。
data
: Dict[str, Any]
下面是一个表格,说明了各种链可能发出的一些事件。为了简洁起见,元数据字段已从表格中省略。链定义已包含在表格之后。
注意 此参考表适用于 V2 版本的模式。
事件
名称
块
输入
输出
on_chat_model_start
[模型名称]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[模型名称]
AIMessageChunk(content=”hello”)
on_chat_model_end
[模型名称]
{“messages”: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=”hello world”)
on_llm_start
[模型名称]
{‘input’: ‘hello’}
on_llm_stream
[模型名称]
‘Hello’
on_llm_end
[模型名称]
‘Hello human!’
on_chain_start
format_docs
on_chain_stream
format_docs
“hello world!, goodbye world!”
on_chain_end
format_docs
[Document(…)]
“hello world!, goodbye world!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[检索器名称]
{“query”: “hello”}
on_retriever_end
[检索器名称]
{“query”: “hello”}
[Document(…), ..]
on_prompt_start
[模板名称]
{“question”: “hello”}
on_prompt_end
[模板名称]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
除了标准事件之外,用户还可以调度自定义事件(请参见下面的示例)。
自定义事件将仅在 API 的 v2 版本中显示!
自定义事件具有以下格式
属性
类型
描述
名称
str
用户定义的事件名称。
data
Any
与事件关联的数据。这可以是任何内容,但我们建议使其为 JSON 可序列化。
以下是与上面显示的标准事件关联的声明
format_docs:
def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool:
@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
prompt:
template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
示例
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
示例:调度自定义事件
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- 参数
input (Any) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。
version (Literal['v1', 'v2']) – 要使用的模式版本,v2 或 v1。用户应使用 v2。v1 用于向后兼容,将在 0.4.0 中弃用。在 API 稳定之前,不会分配默认值。自定义事件将仅在 v2 中显示。
include_names (Optional[Sequence[str]]) – 仅包括来自具有匹配名称的 runnable 的事件。
include_types (Optional[Sequence[str]]) – 仅包括来自具有匹配类型的 runnable 的事件。
include_tags (Optional[Sequence[str]]) – 仅包括来自具有匹配标签的 runnable 的事件。
exclude_names (Optional[Sequence[str]]) – 排除来自具有匹配名称的 runnable 的事件。
exclude_types (Optional[Sequence[str]]) – 排除来自具有匹配类型的 runnable 的事件。
exclude_tags (Optional[Sequence[str]]) – 排除来自具有匹配标签的 runnable 的事件。
kwargs (Any) – 要传递给 Runnable 的其他关键字参数。这些将传递给 astream_log,因为此 astream_events 的实现是构建在 astream_log 之上的。
- Yields:
StreamEvents 的异步流。
- Raises
NotImplementedError – 如果版本不是 v1 或 v2,则引发此错误。
- 返回类型
AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]
- batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
默认实现使用线程池执行器并行运行 invoke。
batch 的默认实现对于 IO 绑定的 runnables 效果良好。
如果子类可以更有效地进行批量处理,则应重写此方法;例如,如果底层 Runnable 使用支持批量模式的 API。
- 参数
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- 返回类型
List[Output]
- batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) Iterator[Tuple[int, Union[Output, Exception]]] ¶
并行运行 invoke 处理输入列表,并在结果完成时生成结果。
- 参数
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- 返回类型
Iterator[Tuple[int, Union[Output, Exception]]]
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable]Input, Output]]) RunnableSerializable[Input, Output] ¶
为可在运行时设置的 Runnables 配置备选项。
- 参数
which (ConfigurableField) – 将用于选择备选项的 ConfigurableField 实例。
default_key (str) – 如果未选择备选项,则使用的默认键。默认为 “default”。
prefix_keys (bool) – 是否使用 ConfigurableField id 作为键的前缀。默认为 False。
**kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – 键到 Runnable 实例或返回 Runnable 实例的可调用对象的字典。
- 返回值
配置了备选项的新 Runnable。
- 返回类型
RunnableSerializable[Input, Output]
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content )
- configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output] ¶
在运行时配置特定的 Runnable 字段。
- 参数
**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – 要配置的 ConfigurableField 实例的字典。
- 返回值
配置了字段的新 Runnable。
- 返回类型
RunnableSerializable[Input, Output]
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content )
- classmethod from_llm(llm: BaseLanguageModel, chain: LLMChain, fallacy_critique_prompt: BasePromptTemplate = FewShotPromptTemplate(input_variables=['fallacy_critique_request', 'input_prompt', 'output_from_model'], examples=[{'input_prompt': "If everyone says the Earth is round, how do I know that's correct?", 'output_from_model': 'The earth is round because your teacher says it is', 'fallacy_critique_request': 'Identify specific ways in which the model’s previous response had a logical fallacy. Also point out potential logical fallacies in the human’s questions and responses. Examples of logical fallacies include but are not limited to ad hominem, ad populum, appeal to emotion and false causality.', 'fallacy_critique': 'This statement contains the logical fallacy of Ad Verecundiam or Appeal to Authority. It is a fallacy because it asserts something to be true purely based on the authority of the source making the claim, without any actual evidence to support it. Fallacy Critique Needed', 'fallacy_revision': 'The earth is round based on evidence from observations of its curvature from high altitudes, photos from space showing its spherical shape, circumnavigation, and the fact that we see its rounded shadow on the moon during lunar eclipses.'}, {'input_prompt': 'Should we invest more in our school music program? After all, studies show students involved in music perform better academically.', 'output_from_model': "I don't think we should invest more in the music program. Playing the piccolo won't teach someone better math skills.", 'fallacy_critique_request': 'Identify specific ways in which the model’s previous response had a logical fallacy. Also point out potential logical fallacies in the human’s questions and responses. Examples of logical fallacies include but are not limited to ad homimem, ad populum, appeal to emotion and false causality.', 'fallacy_critique': 'This answer commits the division fallacy by rejecting the argument based on assuming capabilities true of the parts (playing an instrument like piccolo) also apply to the whole (the full music program). The answer focuses only on part of the music program rather than considering it as a whole. Fallacy Critique Needed.', 'fallacy_revision': 'While playing an instrument may teach discipline, more evidence is needed on whether music education courses improve critical thinking skills across subjects before determining if increased investment in the whole music program is warranted.'}], example_prompt=PromptTemplate(input_variables=['fallacy_critique', 'fallacy_critique_request', 'input_prompt', 'output_from_model'], template='Human: {input_prompt}\n\nModel: {output_from_model}\n\nFallacy Critique Request: {fallacy_critique_request}\n\nFallacy Critique: {fallacy_critique}'), suffix='Human: {input_prompt}\nModel: {output_from_model}\n\nFallacy Critique Request: {fallacy_critique_request}\n\nFallacy Critique:', example_separator='\n === \n', prefix="Below is a conversation between a human and an AI assistant. If there is no material critique of the model output, append to the end of the Fallacy Critique: 'No fallacy critique needed.' If there is material critique of the model output, append to the end of the Fallacy Critique: 'Fallacy Critique needed.'"), fallacy_revision_prompt: BasePromptTemplate != FewShotPromptTemplate(input_variables=['fallacy_critique', 'fallacy_critique_request', 'fallacy_revision_request', 'input_prompt', 'output_from_model'], examples=[{'input_prompt': "If everyone says the Earth is round, how do I know that's correct?", 'output_from_model': 'The earth is round because your teacher says it is', 'fallacy_critique_request': 'Identify specific ways in which the model’s previous response had a logical fallacy. Also point out potential logical fallacies in the human’s questions and responses. Examples of logical fallacies include but are not limited to ad hominem, ad populum, appeal to emotion and false causality.', 'fallacy_critique': 'This statement contains the logical fallacy of Ad Verecundiam or Appeal to Authority. It is a fallacy because it asserts something to be true purely based on the authority of the source making the claim, without any actual evidence to support it. Fallacy Critique Needed', 'fallacy_revision_request': 'Please rewrite the model response to remove all logical fallacies, and to politely point out any logical fallacies from the human.', 'fallacy_revision': 'The earth is round based on evidence from observations of its curvature from high altitudes, photos from space showing its spherical shape, circumnavigation, and the fact that we see its rounded shadow on the moon during lunar eclipses.'}, {'input_prompt': 'Should we invest more in our school music program? After all, studies show students involved in music perform better academically.', 'output_from_model': "I don't think we should invest more in the music program. Playing the piccolo won't teach someone better math skills.", 'fallacy_critique_request': 'Identify specific ways in which the model’s previous response had a logical fallacy. Also point out potential logical fallacies in the human’s questions and responses. Examples of logical fallacies include but are not limited to ad homimem, ad populum, appeal to emotion and false causality.', 'fallacy_critique': 'This answer commits the division fallacy by rejecting the argument based on assuming capabilities true of the parts (playing an instrument like piccolo) also apply to the whole (the full music program). The answer focuses only on part of the music program rather than considering it as a whole. Fallacy Critique Needed.', 'fallacy_revision_request': 'Please rewrite the model response to remove all logical fallacies, and to politely point out any logical fallacies from the human.', 'fallacy_revision': 'While playing an instrument may teach discipline, more evidence is needed on whether music education courses improve critical thinking skills across subjects before determining if increased investment in the whole music program is warranted.'}], example_prompt=PromptTemplate(input_variables=['fallacy_critique', 'fallacy_critique_request', 'input_prompt', 'output_from_model'], template='Human: {input_prompt}\n\nModel: {output_from_model}\n\nFallacy Critique Request: {fallacy_critique_request}\n\nFallacy Critique: {fallacy_critique}'), suffix='Human: {input_prompt}\n\nModel: {output_from_model}\n\nFallacy Critique Request: {fallacy_critique_request}\n\nFallacy Critique: {fallacy_critique}\n\nIf the fallacy critique does not identify anything worth changing, ignore the Fallacy Revision Request and do not make any revisions. Instead, return "No revisions needed".\n\nIf the fallacy critique does identify something worth changing, please revise the model response based on the Fallacy Revision Request.\n\nFallacy Revision Request: {fallacy_revision_request}\n\nFallacy Revision:', example_separator='\n === \n', prefix='Below is a conversation between a human and an AI assistant.'), **kwargs: Any) FallacyChain [source]¶
从 LLM 创建链。
- 参数
llm (BaseLanguageModel) –
chain (LLMChain) –
fallacy_critique_prompt (BasePromptTemplate) –
fallacy_revision_prompt (BasePromptTemplate) –
kwargs (Any) –
- 返回类型
- classmethod get_fallacies(names: Optional[List[str]] = None) List[LogicalFallacy] [source]¶
- 参数
names (Optional[List[str]]) –
- 返回类型
List[LogicalFallacy]
- invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) Dict[str, Any] ¶
将单个输入转换为输出。重写以实现。
- 参数
input (Dict[str, Any]) – Runnable 的输入。
config (Optional[RunnableConfig]) – 调用 Runnable 时使用的配置。该配置支持标准键,如用于跟踪目的的 ‘tags’、‘metadata’,用于控制并行执行多少工作的 ‘max_concurrency’,以及其他键。请参阅 RunnableConfig 以获取更多详细信息。
kwargs (Any) –
- 返回值
Runnable 的输出。
- 返回类型
Dict[str, Any]
- prep_inputs(inputs: Union[Dict[str, Any], Any]) Dict[str, str] ¶
准备链输入,包括从内存中添加输入。
- 参数
inputs (Union[Dict[str, Any], Any]) – 原始输入的字典,或者当链只期望一个参数时的单个输入。应该包含 Chain.input_keys 中指定的所有输入,除了将由链的内存设置的输入。
- 返回值
包含所有输入的字典,包括链的内存添加的输入。
- 返回类型
Dict[str, str]
- prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) Dict[str, str] ¶
验证和准备链输出,并将关于此运行的信息保存到内存中。
- 参数
inputs (Dict[str, str]) – 链输入的字典,包括链内存添加的任何输入。
outputs (Dict[str, str]) – 初始链输出的字典。
return_only_outputs (bool) – 是否仅返回链输出。如果为 False,输入也会添加到最终输出中。
- 返回值
最终链输出的字典。
- 返回类型
Dict[str, str]
- run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) Any ¶
Deprecated since version langchain==0.1.0: 使用
invoke
代替。执行链的便捷方法。
此方法与 Chain.__call__ 之间的主要区别在于,此方法期望输入直接作为位置参数或关键字参数传入,而 Chain.__call__ 期望单个输入字典包含所有输入
- 参数
*args (Any) – 如果链期望单个输入,则可以作为唯一的位置参数传入。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 用于此链运行的回调。这些回调将添加到构造期间传递给链的回调之外,但只有这些运行时回调将传播到对其他对象的调用。
tags (Optional[List[str]]) – 要传递给所有回调的字符串标签列表。这些标签将添加到构造期间传递给链的标签之外,但只有这些运行时标签将传播到对其他对象的调用。
**kwargs (Any) – 如果链期望多个输入,则可以直接作为关键字参数传入。
metadata (Optional[Dict[str, Any]]) –
**kwargs –
- 返回值
链输出。
- 返回类型
Any
示例
# Suppose we have a single-input chain that takes a 'question' string: chain.run("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..." chain.run(question=question, context=context) # -> "The temperature in Boise is..."
- save(file_path: Union[Path, str]) None ¶
保存链。
- 期望实现 Chain._chain_type 属性,并且内存为空。
空值。
- 参数
file_path (Union[Path, str]) – 将链保存到的文件路径。
- 返回类型
无
示例
chain.save(file_path="path/chain.yaml")
- stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) Iterator[Output] ¶
stream
的默认实现,它调用invoke
。如果子类支持流式输出,则应该重写此方法。- 参数
input (Input) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。
kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。
- Yields:
Runnable 的输出。
- 返回类型
迭代器[输出]
- to_json() Union[SerializedConstructor, SerializedNotImplemented] ¶
将 Runnable 序列化为 JSON。
- 返回值
Runnable 的 JSON 可序列化表示形式。
- 返回类型
- property input_keys: List[str]¶
输入键。
- property output_keys: List[str]¶
输出键。