langchain_openai.chat_models.azure
.AzureChatOpenAI¶
Note
AzureChatOpenAI implements the standard Runnable Interface
. 🏃
The Runnable Interface
has additional methods that are available on runnables, such as with_types
, with_retry
, assign
, bind
, get_graph
, and more.
- class langchain_openai.chat_models.azure.AzureChatOpenAI[source]¶
Bases:
BaseChatOpenAI
Azure OpenAI chat model integration.
- Setup:
Head to the https://learn.microsoft.com/en-us/azure/ai-services/openai/chatgpt-quickstart?tabs=command-line%2Cpython-new&pivots=programming-language-python to create your Azure OpenAI deployment.
Then install
langchain-openai
and set environment variablesAZURE_OPENAI_API_KEY
andAZURE_OPENAI_ENDPOINT
:pip install -U langchain-openai export AZURE_OPENAI_API_KEY="your-api-key" export AZURE_OPENAI_ENDPOINT="https://your-endpoint.openai.azure.com/"
- Key init args — completion params:
- azure_deployment: str
Name of Azure OpenAI deployment to use.
- temperature: float
Sampling temperature.
- max_tokens: Optional[int]
Max number of tokens to generate.
- logprobs: Optional[bool]
Whether to return logprobs.
- Key init args — client params:
- api_version: str
Azure OpenAI API version to use. See more on the different versions here: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#rest-api-versioning
- timeout: Union[float, Tuple[float, float], Any, None]
Timeout for requests.
- max_retries: int
Max number of retries.
- organization: Optional[str]
OpenAI organization ID. If not passed in will be read from env var OPENAI_ORG_ID.
- model: Optional[str]
The name of the underlying OpenAI model. Used for tracing and token counting. Does not affect completion. E.g. “gpt-4”, “gpt-35-turbo”, etc.
- model_version: Optional[str]
The version of the underlying OpenAI model. Used for tracing and token counting. Does not affect completion. E.g., “0125”, “0125-preview”, etc.
See full list of supported init args and their descriptions in the params section.
- Instantiate:
from langchain_openai import AzureChatOpenAI llm = AzureChatOpenAI( azure_deployment="your-deployment", api_version="2024-05-01-preview", temperature=0, max_tokens=None, timeout=None, max_retries=2, # organization="...", # model="gpt-35-turbo", # model_version="0125", # other params... )
NOTE: Any param which is not explicitly supported will be passed directly to the
openai.AzureOpenAI.chat.completions.create(...)
API every time to the model is invoked. For example:from langchain_openai import AzureChatOpenAI import openai AzureChatOpenAI(..., logprobs=True).invoke(...) # results in underlying API call of: openai.AzureOpenAI(..).chat.completions.create(..., logprobs=True) # which is also equivalent to: AzureChatOpenAI(...).invoke(..., logprobs=True)
- Invoke:
messages = [ ( "system", "You are a helpful translator. Translate the user sentence to French.", ), ("human", "I love programming."), ] llm.invoke(messages)
AIMessage( content="J'adore programmer.", usage_metadata={"input_tokens": 28, "output_tokens": 6, "total_tokens": 34}, response_metadata={ "token_usage": { "completion_tokens": 6, "prompt_tokens": 28, "total_tokens": 34, }, "model_name": "gpt-4", "system_fingerprint": "fp_7ec89fabc6", "prompt_filter_results": [ { "prompt_index": 0, "content_filter_results": { "hate": {"filtered": False, "severity": "safe"}, "self_harm": {"filtered": False, "severity": "safe"}, "sexual": {"filtered": False, "severity": "safe"}, "violence": {"filtered": False, "severity": "safe"}, }, } ], "finish_reason": "stop", "logprobs": None, "content_filter_results": { "hate": {"filtered": False, "severity": "safe"}, "self_harm": {"filtered": False, "severity": "safe"}, "sexual": {"filtered": False, "severity": "safe"}, "violence": {"filtered": False, "severity": "safe"}, }, }, id="run-6d7a5282-0de0-4f27-9cc0-82a9db9a3ce9-0", )
- Stream:
for chunk in llm.stream(messages): print(chunk)
AIMessageChunk(content="", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f") AIMessageChunk(content="J", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f") AIMessageChunk(content="'", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f") AIMessageChunk(content="ad", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f") AIMessageChunk(content="ore", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f") AIMessageChunk(content=" la", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f") AIMessageChunk(content=" programm", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f") AIMessageChunk(content="ation", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f") AIMessageChunk(content=".", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f") AIMessageChunk( content="", response_metadata={ "finish_reason": "stop", "model_name": "gpt-4", "system_fingerprint": "fp_811936bd4f", }, id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f", )
stream = llm.stream(messages) full = next(stream) for chunk in stream: full += chunk full
AIMessageChunk( content="J'adore la programmation.", response_metadata={ "finish_reason": "stop", "model_name": "gpt-4", "system_fingerprint": "fp_811936bd4f", }, id="run-ba60e41c-9258-44b8-8f3a-2f10599643b3", )
- Async:
await llm.ainvoke(messages) # stream: # async for chunk in (await llm.astream(messages)) # batch: # await llm.abatch([messages])
- Tool calling:
from langchain_core.pydantic_v1 import BaseModel, Field class GetWeather(BaseModel): '''Get the current weather in a given location''' location: str = Field( ..., description="The city and state, e.g. San Francisco, CA" ) class GetPopulation(BaseModel): '''Get the current population in a given location''' location: str = Field( ..., description="The city and state, e.g. San Francisco, CA" ) llm_with_tools = llm.bind_tools([GetWeather, GetPopulation]) ai_msg = llm_with_tools.invoke( "Which city is hotter today and which is bigger: LA or NY?" ) ai_msg.tool_calls
[ { "name": "GetWeather", "args": {"location": "Los Angeles, CA"}, "id": "call_6XswGD5Pqk8Tt5atYr7tfenU", }, { "name": "GetWeather", "args": {"location": "New York, NY"}, "id": "call_ZVL15vA8Y7kXqOy3dtmQgeCi", }, { "name": "GetPopulation", "args": {"location": "Los Angeles, CA"}, "id": "call_49CFW8zqC9W7mh7hbMLSIrXw", }, { "name": "GetPopulation", "args": {"location": "New York, NY"}, "id": "call_6ghfKxV264jEfe1mRIkS3PE7", }, ]
- Structured output:
from typing import Optional from langchain_core.pydantic_v1 import BaseModel, Field class Joke(BaseModel): '''Joke to tell user.''' setup: str = Field(description="The setup of the joke") punchline: str = Field(description="The punchline to the joke") rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10") structured_llm = llm.with_structured_output(Joke) structured_llm.invoke("Tell me a joke about cats")
Joke( setup="Why was the cat sitting on the computer?", punchline="To keep an eye on the mouse!", rating=None, )
See
AzureChatOpenAI.with_structured_output()
for more.- JSON mode:
json_llm = llm.bind(response_format={"type": "json_object"}) ai_msg = json_llm.invoke( "Return a JSON object with key 'random_ints' and a value of 10 random ints in [0-99]" ) ai_msg.content
'\n{\n "random_ints": [23, 87, 45, 12, 78, 34, 56, 90, 11, 67]\n}'
- Image input:
import base64 import httpx from langchain_core.messages import HumanMessage image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8") message = HumanMessage( content=[ {"type": "text", "text": "describe the weather in this image"}, { "type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_data}"}, }, ] ) ai_msg = llm.invoke([message]) ai_msg.content
"The weather in the image appears to be quite pleasant. The sky is mostly clear"
- Token usage:
ai_msg = llm.invoke(messages) ai_msg.usage_metadata
{"input_tokens": 28, "output_tokens": 5, "total_tokens": 33}
- Logprobs:
logprobs_llm = llm.bind(logprobs=True) ai_msg = logprobs_llm.invoke(messages) ai_msg.response_metadata["logprobs"]
{ "content": [ { "token": "J", "bytes": [74], "logprob": -4.9617593e-06, "top_logprobs": [], }, { "token": "'adore", "bytes": [39, 97, 100, 111, 114, 101], "logprob": -0.25202933, "top_logprobs": [], }, { "token": " la", "bytes": [32, 108, 97], "logprob": -0.20141791, "top_logprobs": [], }, { "token": " programmation", "bytes": [ 32, 112, 114, 111, 103, 114, 97, 109, 109, 97, 116, 105, 111, 110, ], "logprob": -1.9361265e-07, "top_logprobs": [], }, { "token": ".", "bytes": [46], "logprob": -1.2233183e-05, "top_logprobs": [], }, ] }
- Response metadata
ai_msg = llm.invoke(messages) ai_msg.response_metadata
{ "token_usage": { "completion_tokens": 6, "prompt_tokens": 28, "total_tokens": 34, }, "model_name": "gpt-35-turbo", "system_fingerprint": None, "prompt_filter_results": [ { "prompt_index": 0, "content_filter_results": { "hate": {"filtered": False, "severity": "safe"}, "self_harm": {"filtered": False, "severity": "safe"}, "sexual": {"filtered": False, "severity": "safe"}, "violence": {"filtered": False, "severity": "safe"}, }, } ], "finish_reason": "stop", "logprobs": None, "content_filter_results": { "hate": {"filtered": False, "severity": "safe"}, "self_harm": {"filtered": False, "severity": "safe"}, "sexual": {"filtered": False, "severity": "safe"}, "violence": {"filtered": False, "severity": "safe"}, }, }
- param azure_ad_token: Optional[SecretStr] = None¶
Your Azure Active Directory token.
Automatically inferred from env var AZURE_OPENAI_AD_TOKEN if not provided. For more: https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id.
- Constraints
type = string
writeOnly = True
format = password
- param azure_ad_token_provider: Union[Callable[[], str], None] = None¶
A function that returns an Azure Active Directory token.
Will be invoked on every request.
- param azure_endpoint: Union[str, None] = None¶
Your Azure endpoint, including the resource.
Automatically inferred from env var AZURE_OPENAI_ENDPOINT if not provided. Example: https://example-resource.azure.openai.com/
- param cache: Union[BaseCache, bool, None] = None¶
Whether to cache the response.
If true, will use the global cache.
If false, will not use a cache
If None, will use the global cache if it’s set, otherwise no cache.
If instance of BaseCache, will use the provided cache.
Caching is not currently supported for streaming methods of models.
- param callback_manager: Optional[BaseCallbackManager] = None¶
[DEPRECATED] Callback manager to add to the run trace.
- param callbacks: Callbacks = None¶
Callbacks to add to the run trace.
- param custom_get_token_ids: Optional[Callable[[str], List[int]]] = None¶
Optional encoder to use for counting tokens.
- param default_headers: Union[Mapping[str, str], None] = None¶
- param default_query: Union[Mapping[str, object], None] = None¶
- param deployment_name: Union[str, None] = None (alias 'azure_deployment')¶
A model deployment.
If given sets the base client URL to include /deployments/{azure_deployment}. Note: this means you won’t be able to use non-deployment endpoints.
- param extra_body: Optional[Mapping[str, Any]] = None¶
Optional additional JSON properties to include in the request parameters when making requests to OpenAI compatible APIs, such as vLLM.
- param frequency_penalty: Optional[float] = None¶
Penalizes repeated tokens according to frequency.
- param http_async_client: Union[Any, None] = None¶
Optional httpx.AsyncClient. Only used for async invocations. Must specify http_client as well if you’d like a custom client for sync invocations.
- param http_client: Union[Any, None] = None¶
Optional httpx.Client. Only used for sync invocations. Must specify http_async_client as well if you’d like a custom client for async invocations.
- param include_response_headers: bool = False¶
Whether to include response headers in the output message response_metadata.
- param logit_bias: Optional[Dict[int, int]] = None¶
Modify the likelihood of specified tokens appearing in the completion.
- param logprobs: Optional[bool] = False¶
Whether to return logprobs.
- param max_retries: int = 2¶
Maximum number of retries to make when generating.
- param max_tokens: Optional[int] = None¶
Maximum number of tokens to generate.
- param metadata: Optional[Dict[str, Any]] = None¶
Metadata to add to the run trace.
- param model_kwargs: Dict[str, Any] [Optional]¶
Holds any model parameters valid for create call not explicitly specified.
- param model_name: Optional[str] = None (alias 'model')¶
Name of the deployed OpenAI model, e.g. “gpt-4o”, “gpt-35-turbo”, etc.
Distinct from the Azure deployment name, which is set by the Azure user. Used for tracing and token counting. Does NOT affect completion.
- param model_version: str = ''¶
The version of the model (e.g. “0125” for gpt-3.5-0125).
Azure OpenAI doesn’t return model version with the response by default so it must be manually specified if you want to use this information downstream, e.g. when calculating costs.
When you specify the version, it will be appended to the model name in the response. Setting correct version will help you to calculate the cost properly. Model version is not validated, so make sure you set it correctly to get the correct cost.
- param n: int = 1¶
Number of chat completions to generate for each prompt.
- param openai_api_base: Optional[str] = None (alias 'base_url')¶
Base URL path for API requests, leave blank if not using a proxy or service emulator.
- param openai_api_key: Optional[SecretStr] = None (alias 'api_key')¶
Automatically inferred from env var AZURE_OPENAI_API_KEY if not provided.
- Constraints
type = string
writeOnly = True
format = password
- param openai_api_type: str = ''¶
Legacy, for openai<1.0.0 support.
- param openai_api_version: str = '' (alias 'api_version')¶
Automatically inferred from env var OPENAI_API_VERSION if not provided.
- param openai_organization: Optional[str] = None (alias 'organization')¶
Automatically inferred from env var OPENAI_ORG_ID if not provided.
- param openai_proxy: Optional[str] = None¶
- param presence_penalty: Optional[float] = None¶
Penalizes repeated tokens.
- param rate_limiter: Optional[BaseRateLimiter] = None¶
An optional rate limiter to use for limiting the number of requests.
- param request_timeout: Union[float, Tuple[float, float], Any, None] = None (alias 'timeout')¶
Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or None.
- param seed: Optional[int] = None¶
Seed for generation
- param stop: Optional[Union[List[str], str]] = None (alias 'stop_sequences')¶
Default stop sequences.
- param streaming: bool = False¶
Whether to stream the results or not.
- param tags: Optional[List[str]] = None¶
Tags to add to the run trace.
- param temperature: float = 0.7¶
What sampling temperature to use.
- param tiktoken_model_name: Optional[str] = None¶
The model name to pass to tiktoken when using this class. Tiktoken is used to count the number of tokens in documents to constrain them to be under a certain limit. By default, when set to None, this will be the same as the embedding model name. However, there are some cases where you may want to use this Embedding class with a model name not supported by tiktoken. This can include when using Azure embeddings or when using one of the many model providers that expose an OpenAI-like API but with different models. In those cases, in order to avoid erroring when tiktoken is called, you can specify a model name to use here.
- param top_logprobs: Optional[int] = None¶
Number of most likely tokens to return at each token position, each with an associated log probability. logprobs must be set to true if this parameter is used.
- param top_p: Optional[float] = None¶
Total probability mass of tokens to consider at each step.
- param validate_base_url: bool = True¶
If legacy arg openai_api_base is passed in, try to infer if it is a base_url or azure_endpoint and update client params accordingly.
- param verbose: bool [Optional]¶
Whether to print out response text.
- __call__(messages: List[BaseMessage], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) BaseMessage ¶
Deprecated since version langchain-core==0.1.7: Use
invoke
instead.- Parameters
messages (List[BaseMessage]) –
stop (Optional[List[str]]) –
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
kwargs (Any) –
- Return type
- async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.
- Parameters
inputs (List[Input]) – A list of inputs to the Runnable.
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – A config to use when invoking the Runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.
return_exceptions (bool) – Whether to return exceptions instead of raising them. Defaults to False.
kwargs (Optional[Any]) – Additional keyword arguments to pass to the Runnable.
- Returns
A list of outputs from the Runnable.
- Return type
List[Output]
- async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]] ¶
Run ainvoke in parallel on a list of inputs, yielding results as they complete.
- Parameters
inputs (Sequence[Input]) – A list of inputs to the Runnable.
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – A config to use when invoking the Runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None. Defaults to None.
return_exceptions (bool) – Whether to return exceptions instead of raising them. Defaults to False.
kwargs (Optional[Any]) – Additional keyword arguments to pass to the Runnable.
- Yields
A tuple of the index of the input and the output from the Runnable.
- Return type
AsyncIterator[Tuple[int, Union[Output, Exception]]]
- async agenerate(messages: List[List[BaseMessage]], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, run_id: Optional[UUID] = None, **kwargs: Any) LLMResult ¶
Asynchronously pass a sequence of prompts to a model and return generations.
This method should make use of batched calls for models that expose a batched API.
- Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
- are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
- Parameters
messages (List[List[BaseMessage]]) – List of list of messages.
stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
**kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
tags (Optional[List[str]]) –
metadata (Optional[Dict[str, Any]]) –
run_name (Optional[str]) –
run_id (Optional[UUID]) –
**kwargs –
- Returns
- An LLMResult, which contains a list of candidate Generations for each input
prompt and additional model provider-specific output.
- Return type
- async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) LLMResult ¶
Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched API.
- Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
- are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
- Parameters
prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models).
stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
**kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
- Returns
- An LLMResult, which contains a list of candidate Generations for each input
prompt and additional model provider-specific output.
- Return type
- async ainvoke(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) BaseMessage ¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if the Runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
- Parameters
input (LanguageModelInput) –
config (Optional[RunnableConfig]) –
stop (Optional[List[str]]) –
kwargs (Any) –
- Return type
- async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str ¶
Deprecated since version langchain-core==0.1.7: Use
ainvoke
instead.- Parameters
text (str) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- Return type
str
- async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage ¶
Deprecated since version langchain-core==0.1.7: Use
ainvoke
instead.- Parameters
messages (List[BaseMessage]) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- Return type
- as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool ¶
Beta
This API is in beta and may change in the future.
Create a BaseTool from a Runnable.
as_tool
will instantiate a BaseTool with a name, description, andargs_schema
from a Runnable. Where possible, schemas are inferred fromrunnable.get_input_schema
. Alternatively (e.g., if the Runnable takes a dict as input and the specific dict keys are not typed), the schema can be specified directly withargs_schema
. You can also passarg_types
to just specify the required arguments and their types.- Parameters
args_schema (Optional[Type[BaseModel]]) – The schema for the tool. Defaults to None.
name (Optional[str]) – The name of the tool. Defaults to None.
description (Optional[str]) – The description of the tool. Defaults to None.
arg_types (Optional[Dict[str, Type]]) – A dictionary of argument names to types. Defaults to None.
- Returns
A BaseTool instance.
- Return type
Typed dict input:
from typing import List from typing_extensions import TypedDict from langchain_core.runnables import RunnableLambda class Args(TypedDict): a: int b: List[int] def f(x: Args) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool() as_tool.invoke({"a": 3, "b": [1, 2]})
dict
input, specifying schema viaargs_schema
:from typing import Any, Dict, List from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) class FSchema(BaseModel): """Apply a function to an integer and list of integers.""" a: int = Field(..., description="Integer") b: List[int] = Field(..., description="List of ints") runnable = RunnableLambda(f) as_tool = runnable.as_tool(FSchema) as_tool.invoke({"a": 3, "b": [1, 2]})
dict
input, specifying schema viaarg_types
:from typing import Any, Dict, List from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]}) as_tool.invoke({"a": 3, "b": [1, 2]})
String input:
from langchain_core.runnables import RunnableLambda def f(x: str) -> str: return x + "a" def g(x: str) -> str: return x + "z" runnable = RunnableLambda(f) | g as_tool = runnable.as_tool() as_tool.invoke("b")
New in version 0.2.14.
- async astream(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) AsyncIterator[BaseMessageChunk] ¶
Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.
- Parameters
input (LanguageModelInput) – The input to the Runnable.
config (Optional[RunnableConfig]) – The config to use for the Runnable. Defaults to None.
kwargs (Any) – Additional keyword arguments to pass to the Runnable.
stop (Optional[List[str]]) –
- Yields
The output of the Runnable.
- Return type
AsyncIterator[BaseMessageChunk]
- astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]] ¶
Beta
This API is in beta and may change in the future.
Generate a stream of events.
Use to create an iterator over StreamEvents that provide real-time information about the progress of the Runnable, including StreamEvents from intermediate results.
A StreamEvent is a dictionary with the following schema:
event
: str - Event names are of theformat: on_[runnable_type]_(start|stream|end).
name
: str - The name of the Runnable that generated the event.run_id
: str - randomly generated ID associated with the given execution ofthe Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
parent_ids
: List[str] - The IDs of the parent runnables thatgenerated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
tags
: Optional[List[str]] - The tags of the Runnable that generatedthe event.
metadata
: Optional[Dict[str, Any]] - The metadata of the Runnablethat generated the event.
data
: Dict[str, Any]
Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
ATTENTION This reference table is for the V2 version of the schema.
event
name
chunk
input
output
on_chat_model_start
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[model name]
AIMessageChunk(content=”hello”)
on_chat_model_end
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=”hello world”)
on_llm_start
[model name]
{‘input’: ‘hello’}
on_llm_stream
[model name]
‘Hello’
on_llm_end
[model name]
‘Hello human!’
on_chain_start
format_docs
on_chain_stream
format_docs
“hello world!, goodbye world!”
on_chain_end
format_docs
[Document(…)]
“hello world!, goodbye world!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[retriever name]
{“query”: “hello”}
on_retriever_end
[retriever name]
{“query”: “hello”}
[Document(…), ..]
on_prompt_start
[template_name]
{“question”: “hello”}
on_prompt_end
[template_name]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
In addition to the standard events, users can also dispatch custom events (see example below).
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
Attribute
Type
Description
name
str
A user defined name for the event.
data
Any
The data associated with the event. This can be anything, though we suggest making it JSON serializable.
Here are declarations associated with the standard events shown above:
format_docs:
def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool:
@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
prompt:
template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
Example: Dispatch Custom Event
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- Parameters
input (Any) – The input to the Runnable.
config (Optional[RunnableConfig]) – The config to use for the Runnable.
version (Literal['v1', 'v2']) – The version of the schema to use either v2 or v1. Users should use v2. v1 is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in v2.
include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names.
include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types.
include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags.
exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names.
exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types.
exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags.
kwargs (Any) – Additional keyword arguments to pass to the Runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.
- Yields
An async stream of StreamEvents.
- Raises
NotImplementedError – If the version is not v1 or v2.
- Return type
AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]
- batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.
- Parameters
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- Return type
List[Output]
- batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) Iterator[Tuple[int, Union[Output, Exception]]] ¶
Run invoke in parallel on a list of inputs, yielding results as they complete.
- Parameters
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- Return type
Iterator[Tuple[int, Union[Output, Exception]]]
- bind_functions(functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], function_call: Optional[Union[_FunctionCall, str, Literal['auto', 'none']]] = None, **kwargs: Any) Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], BaseMessage] ¶
Bind functions (and other objects) to this chat model.
Assumes model is compatible with OpenAI function-calling API.
- NOTE: Using bind_tools is recommended instead, as the functions and
function_call request parameters are officially marked as deprecated by OpenAI.
- Parameters
functions (Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]]) – A list of function definitions to bind to this chat model. Can be a dictionary, pydantic model, or callable. Pydantic models and callables will be automatically converted to their schema dictionary representation.
function_call (Optional[Union[_FunctionCall, str, Literal['auto', 'none']]]) – Which function to require the model to call. Must be the name of the single provided function or “auto” to automatically determine which function to call (if any).
**kwargs (Any) – Any additional parameters to pass to the
Runnable
constructor.
- Return type
Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], BaseMessage]
- bind_tools(tools: Sequence[Union[Dict[str, Any], Type, Callable, BaseTool]], *, tool_choice: Optional[Union[dict, str, Literal['auto', 'none', 'any', 'required'], bool]] = None, **kwargs: Any) Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], BaseMessage] [source]¶
Bind tool-like objects to this chat model.
Assumes model is compatible with OpenAI tool-calling API.
- Parameters
tools (Sequence[Union[Dict[str, Any], Type, Callable, BaseTool]]) – A list of tool definitions to bind to this chat model. Supports any tool definition handled by
langchain_core.utils.function_calling.convert_to_openai_tool()
.tool_choice (Optional[Union[dict, str, Literal['auto', 'none', 'any', 'required'], bool]]) –
Which tool to require the model to call. Options are:
str of the form
"<<tool_name>>"
: calls <<tool_name>> tool."auto"
: automatically selects a tool (including no tool)."none"
: does not call a tool."any"
or"required"
orTrue
: force at least one tool to be called.dict of the form
{"type": "function", "function": {"name": <<tool_name>>}}
: calls <<tool_name>> tool.False
orNone
: no effect, default OpenAI behavior.
kwargs (Any) – Any additional parameters are passed directly to
self.bind(**kwargs)
.
- Return type
Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], BaseMessage]
- call_as_llm(message: str, stop: Optional[List[str]] = None, **kwargs: Any) str ¶
Deprecated since version langchain-core==0.1.7: Use
invoke
instead.- Parameters
message (str) –
stop (Optional[List[str]]) –
kwargs (Any) –
- Return type
str
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output] ¶
Configure alternatives for Runnables that can be set at runtime.
- Parameters
which (ConfigurableField) – The ConfigurableField instance that will be used to select the alternative.
default_key (str) – The default key to use if no alternative is selected. Defaults to “default”.
prefix_keys (bool) – Whether to prefix the keys with the ConfigurableField id. Defaults to False.
**kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – A dictionary of keys to Runnable instances or callables that return Runnable instances.
- Returns
A new Runnable with the alternatives configured.
- Return type
RunnableSerializable[Input, Output]
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content )
- configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output] ¶
Configure particular Runnable fields at runtime.
- Parameters
**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – A dictionary of ConfigurableField instances to configure.
- Returns
A new Runnable with the fields configured.
- Return type
RunnableSerializable[Input, Output]
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content )
- generate(messages: List[List[BaseMessage]], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, run_id: Optional[UUID] = None, **kwargs: Any) LLMResult ¶
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched API.
- Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
- are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
- Parameters
messages (List[List[BaseMessage]]) – List of list of messages.
stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
**kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
tags (Optional[List[str]]) –
metadata (Optional[Dict[str, Any]]) –
run_name (Optional[str]) –
run_id (Optional[UUID]) –
**kwargs –
- Returns
- An LLMResult, which contains a list of candidate Generations for each input
prompt and additional model provider-specific output.
- Return type
- generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) LLMResult ¶
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched API.
- Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
- are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
- Parameters
prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models).
stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
**kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
- Returns
- An LLMResult, which contains a list of candidate Generations for each input
prompt and additional model provider-specific output.
- Return type
- get_num_tokens(text: str) int ¶
Get the number of tokens present in the text.
Useful for checking if an input fits in a model’s context window.
- Parameters
text (str) – The string input to tokenize.
- Returns
The integer number of tokens in the text.
- Return type
int
- get_num_tokens_from_messages(messages: List[BaseMessage]) int ¶
Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
Requirements: You must have the
pillow
installed if you want to count image tokens if you are specifying the image as a base64 string, and you must have bothpillow
andhttpx
installed if you are specifying the image as a URL. If these aren’t installed image inputs will be ignored in token counting.OpenAI reference: https://github.com/openai/openai-cookbook/blob/ main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb
- Parameters
messages (List[BaseMessage]) –
- Return type
int
- get_token_ids(text: str) List[int] ¶
Get the tokens present in the text with tiktoken package.
- Parameters
text (str) –
- Return type
List[int]
- invoke(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) BaseMessage ¶
Transform a single input into an output. Override to implement.
- Parameters
input (LanguageModelInput) – The input to the Runnable.
config (Optional[RunnableConfig]) – A config to use when invoking the Runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.
stop (Optional[List[str]]) –
kwargs (Any) –
- Returns
The output of the Runnable.
- Return type
- predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str ¶
Deprecated since version langchain-core==0.1.7: Use
invoke
instead.- Parameters
text (str) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- Return type
str
- predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage ¶
Deprecated since version langchain-core==0.1.7: Use
invoke
instead.- Parameters
messages (List[BaseMessage]) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- Return type
- stream(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) Iterator[BaseMessageChunk] ¶
Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output.
- Parameters
input (LanguageModelInput) – The input to the Runnable.
config (Optional[RunnableConfig]) – The config to use for the Runnable. Defaults to None.
kwargs (Any) – Additional keyword arguments to pass to the Runnable.
stop (Optional[List[str]]) –
- Yields
The output of the Runnable.
- Return type
Iterator[BaseMessageChunk]
- to_json() Union[SerializedConstructor, SerializedNotImplemented] ¶
Serialize the Runnable to JSON.
- Returns
A JSON-serializable representation of the Runnable.
- Return type
- with_structured_output(schema: Optional[Union[Dict[str, Any], Type[_BM]]] = None, *, method: Literal['function_calling', 'json_mode'] = 'function_calling', include_raw: Literal[True] = True, **kwargs: Any) Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], _AllReturnType] [source]¶
- with_structured_output(schema: Optional[Union[Dict[str, Any], Type[_BM]]] = None, *, method: Literal['function_calling', 'json_mode'] = 'function_calling', include_raw: Literal[False] = False, **kwargs: Any) Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, _BM]]
Model wrapper that returns outputs formatted to match the given schema.
- Args:
- schema:
- The output schema. Can be passed in as:
an OpenAI function/tool schema,
a JSON Schema,
a TypedDict class,
or a Pydantic class.
If
schema
is a Pydantic class then the model output will be a Pydantic instance of that class, and the model-generated fields will be validated by the Pydantic class. Otherwise the model output will be a dict and will not be validated. Seelangchain_core.utils.function_calling.convert_to_openai_tool()
for more on how to properly specify types and descriptions of schema fields when specifying a Pydantic or TypedDict class.- method:
The method for steering model generation, either “function_calling” or “json_mode”. If “function_calling” then the schema will be converted to an OpenAI function and the returned model will make use of the function-calling API. If “json_mode” then OpenAI’s JSON mode will be used. Note that if using “json_mode” then you must include instructions for formatting the output into the desired schema into the model call.
- include_raw:
If False then only the parsed structured output is returned. If an error occurs during model output parsing it will be raised. If True then both the raw model response (a BaseMessage) and the parsed model response will be returned. If an error occurs during output parsing it will be caught and returned as well. The final output is always a dict with keys “raw”, “parsed”, and “parsing_error”.
- Returns:
A Runnable that takes same inputs as a
langchain_core.language_models.chat.BaseChatModel
.If
include_raw
is False andschema
is a Pydantic class, Runnable outputs an instance ofschema
(i.e., a Pydantic object).Otherwise, if
include_raw
is False then Runnable outputs a dict.- If
include_raw
is True, then Runnable outputs a dict with keys: "raw"
: BaseMessage"parsed"
: None if there was a parsing error, otherwise the type depends on theschema
as described above."parsing_error"
: Optional[BaseException]
- If
- Example: schema=Pydantic class, method=”function_calling”, include_raw=False:
from typing import Optional from langchain_openai import AzureChatOpenAI from langchain_core.pydantic_v1 import BaseModel, Field class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str # If we provide default values and/or descriptions for fields, these will be passed # to the model. This is an important part of improving a model's ability to # correctly return structured outputs. justification: Optional[str] = Field( default=None, description="A justification for the answer." ) llm = AzureChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0) structured_llm = llm.with_structured_output(AnswerWithJustification) structured_llm.invoke( "What weighs more a pound of bricks or a pound of feathers" ) # -> AnswerWithJustification( # answer='They weigh the same', # justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.' # )
- Example: schema=Pydantic class, method=”function_calling”, include_raw=True:
from langchain_openai import AzureChatOpenAI from langchain_core.pydantic_v1 import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = AzureChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0) structured_llm = llm.with_structured_output( AnswerWithJustification, include_raw=True ) structured_llm.invoke( "What weighs more a pound of bricks or a pound of feathers" ) # -> { # 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}), # 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'), # 'parsing_error': None # }
- Example: schema=TypedDict class, method=”function_calling”, include_raw=False:
# IMPORTANT: If you are using Python <=3.8, you need to import Annotated # from typing_extensions, not from typing. from typing_extensions import Annotated, TypedDict from langchain_openai import AzureChatOpenAI class AnswerWithJustification(TypedDict): '''An answer to the user question along with justification for the answer.''' answer: str justification: Annotated[ Optional[str], None, "A justification for the answer." ] llm = AzureChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0) structured_llm = llm.with_structured_output(AnswerWithJustification) structured_llm.invoke( "What weighs more a pound of bricks or a pound of feathers" ) # -> { # 'answer': 'They weigh the same', # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.' # }
- Example: schema=OpenAI function schema, method=”function_calling”, include_raw=False:
from langchain_openai import AzureChatOpenAI oai_schema = { 'name': 'AnswerWithJustification', 'description': 'An answer to the user question along with justification for the answer.', 'parameters': { 'type': 'object', 'properties': { 'answer': {'type': 'string'}, 'justification': {'description': 'A justification for the answer.', 'type': 'string'} }, 'required': ['answer'] } } llm = AzureChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0) structured_llm = llm.with_structured_output(oai_schema) structured_llm.invoke( "What weighs more a pound of bricks or a pound of feathers" ) # -> { # 'answer': 'They weigh the same', # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.' # }
- Example: schema=Pydantic class, method=”json_mode”, include_raw=True:
from langchain_openai import AzureChatOpenAI from langchain_core.pydantic_v1 import BaseModel class AnswerWithJustification(BaseModel): answer: str justification: str llm = AzureChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0) structured_llm = llm.with_structured_output( AnswerWithJustification, method="json_mode", include_raw=True ) structured_llm.invoke( "Answer the following question. " "Make sure to return a JSON blob with keys 'answer' and 'justification'.
- “
“What’s heavier a pound of bricks or a pound of feathers?”
) # -> { # ‘raw’: AIMessage(content=’{
“answer”: “They are both the same weight.”, “justification”: “Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.”
- }’),
# ‘parsed’: AnswerWithJustification(answer=’They are both the same weight.’, justification=’Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.’), # ‘parsing_error’: None # }
- Example: schema=None, method=”json_mode”, include_raw=True:
structured_llm = llm.with_structured_output(method="json_mode", include_raw=True) structured_llm.invoke( "Answer the following question. " "Make sure to return a JSON blob with keys 'answer' and 'justification'.
- “
“What’s heavier a pound of bricks or a pound of feathers?”
) # -> { # ‘raw’: AIMessage(content=’{
“answer”: “They are both the same weight.”, “justification”: “Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.”
- }’),
# ‘parsed’: { # ‘answer’: ‘They are both the same weight.’, # ‘justification’: ‘Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.’ # }, # ‘parsing_error’: None # }