langchain_community.chat_models.llamacpp
.ChatLlamaCpp¶
Note
ChatLlamaCpp implements the standard Runnable Interface
. 🏃
The Runnable Interface
has additional methods that are available on runnables, such as with_types
, with_retry
, assign
, bind
, get_graph
, and more.
- class langchain_community.chat_models.llamacpp.ChatLlamaCpp[source]¶
Bases:
BaseChatModel
llama.cpp model.
To use, you should have the llama-cpp-python library installed, and provide the path to the Llama model as a named parameter to the constructor. Check out: https://github.com/abetlen/llama-cpp-python
- param cache: Union[BaseCache, bool, None] = None¶
Whether to cache the response.
If true, will use the global cache.
If false, will not use a cache
If None, will use the global cache if it’s set, otherwise no cache.
If instance of BaseCache, will use the provided cache.
Caching is not currently supported for streaming methods of models.
- param callback_manager: Optional[BaseCallbackManager] = None¶
[DEPRECATED] Callback manager to add to the run trace.
- param callbacks: Callbacks = None¶
Callbacks to add to the run trace.
- param custom_get_token_ids: Optional[Callable[[str], List[int]]] = None¶
Optional encoder to use for counting tokens.
- param echo: bool = False¶
Whether to echo the prompt.
- param f16_kv: bool = True¶
Use half-precision for key/value cache.
- param grammar: Any = None¶
grammar: formal grammar for constraining model outputs. For instance, the grammar can be used to force the model to generate valid JSON or to speak exclusively in emojis. At most one of grammar_path and grammar should be passed in.
- param grammar_path: Optional[Union[str, Path]] = None¶
grammar_path: Path to the .gbnf file that defines formal grammars for constraining model outputs. For instance, the grammar can be used to force the model to generate valid JSON or to speak exclusively in emojis. At most one of grammar_path and grammar should be passed in.
- param last_n_tokens_size: int = 64¶
The number of tokens to look back when applying the repeat_penalty.
- param logits_all: bool = False¶
Return logits for all tokens, not just the last token.
- param logprobs: Optional[int] = None¶
The number of logprobs to return. If None, no logprobs are returned.
- param lora_base: Optional[str] = None¶
The path to the Llama LoRA base model.
- param lora_path: Optional[str] = None¶
The path to the Llama LoRA. If None, no LoRa is loaded.
- param max_tokens: int = 256¶
The maximum number of tokens to generate.
- param metadata: Optional[Dict[str, Any]] = None¶
Metadata to add to the run trace.
- param model_kwargs: Dict[str, Any] [Optional]¶
Any additional parameters to pass to llama_cpp.Llama.
- param model_path: str [Required]¶
The path to the Llama model file.
- param n_batch: int = 8¶
Number of tokens to process in parallel. Should be a number between 1 and n_ctx.
- param n_ctx: int = 512¶
Token context window.
- param n_gpu_layers: Optional[int] = None¶
Number of layers to be loaded into gpu memory. Default None.
- param n_parts: int = -1¶
Number of parts to split the model into. If -1, the number of parts is automatically determined.
- param n_threads: Optional[int] = None¶
Number of threads to use. If None, the number of threads is automatically determined.
- param rate_limiter: Optional[BaseRateLimiter] = None¶
An optional rate limiter to use for limiting the number of requests.
- param repeat_penalty: float = 1.1¶
The penalty to apply to repeated tokens.
- param rope_freq_base: float = 10000.0¶
Base frequency for rope sampling.
- param rope_freq_scale: float = 1.0¶
Scale factor for rope sampling.
- param seed: int = -1¶
Seed. If -1, a random seed is used.
- param stop: Optional[List[str]] = None¶
A list of strings to stop generation when encountered.
- param streaming: bool = True¶
Whether to stream the results, token by token.
- param suffix: Optional[str] = None¶
A suffix to append to the generated text. If None, no suffix is appended.
- param tags: Optional[List[str]] = None¶
Tags to add to the run trace.
- param temperature: float = 0.8¶
The temperature to use for sampling.
- param top_k: int = 40¶
The top-k value to use for sampling.
- param top_p: float = 0.95¶
The top-p value to use for sampling.
- param use_mlock: bool = False¶
Force system to keep model in RAM.
- param use_mmap: bool = True¶
Whether to keep the model loaded in RAM
- param verbose: bool = True¶
Print verbose output to stderr.
- param vocab_only: bool = False¶
Only load the vocabulary, no weights.
- __call__(messages: List[BaseMessage], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) BaseMessage ¶
Deprecated since version langchain-core==0.1.7: Use
invoke
instead.- Parameters
messages (List[BaseMessage]) –
stop (Optional[List[str]]) –
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
kwargs (Any) –
- Return type
- async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.
- Parameters
inputs (List[Input]) – A list of inputs to the Runnable.
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – A config to use when invoking the Runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None.
return_exceptions (bool) – Whether to return exceptions instead of raising them. Defaults to False.
kwargs (Optional[Any]) – Additional keyword arguments to pass to the Runnable.
- Returns
A list of outputs from the Runnable.
- Return type
List[Output]
- async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]] ¶
Run ainvoke in parallel on a list of inputs, yielding results as they complete.
- Parameters
inputs (Sequence[Input]) – A list of inputs to the Runnable.
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – A config to use when invoking the Runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Defaults to None. Defaults to None.
return_exceptions (bool) – Whether to return exceptions instead of raising them. Defaults to False.
kwargs (Optional[Any]) – Additional keyword arguments to pass to the Runnable.
- Yields
A tuple of the index of the input and the output from the Runnable.
- Return type
AsyncIterator[Tuple[int, Union[Output, Exception]]]
- async agenerate(messages: List[List[BaseMessage]], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, run_id: Optional[UUID] = None, **kwargs: Any) LLMResult ¶
Asynchronously pass a sequence of prompts to a model and return generations.
This method should make use of batched calls for models that expose a batched API.
- Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
- are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
- Parameters
messages (List[List[BaseMessage]]) – List of list of messages.
stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
**kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
tags (Optional[List[str]]) –
metadata (Optional[Dict[str, Any]]) –
run_name (Optional[str]) –
run_id (Optional[UUID]) –
**kwargs –
- Returns
- An LLMResult, which contains a list of candidate Generations for each input
prompt and additional model provider-specific output.
- Return type
- async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) LLMResult ¶
Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched API.
- Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
- are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
- Parameters
prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models).
stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
**kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
- Returns
- An LLMResult, which contains a list of candidate Generations for each input
prompt and additional model provider-specific output.
- Return type
- async ainvoke(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) BaseMessage ¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if the Runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
- Parameters
input (LanguageModelInput) –
config (Optional[RunnableConfig]) –
stop (Optional[List[str]]) –
kwargs (Any) –
- Return type
- async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str ¶
Deprecated since version langchain-core==0.1.7: Use
ainvoke
instead.- Parameters
text (str) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- Return type
str
- async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage ¶
Deprecated since version langchain-core==0.1.7: Use
ainvoke
instead.- Parameters
messages (List[BaseMessage]) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- Return type
- as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool ¶
Beta
This API is in beta and may change in the future.
Create a BaseTool from a Runnable.
as_tool
will instantiate a BaseTool with a name, description, andargs_schema
from a Runnable. Where possible, schemas are inferred fromrunnable.get_input_schema
. Alternatively (e.g., if the Runnable takes a dict as input and the specific dict keys are not typed), the schema can be specified directly withargs_schema
. You can also passarg_types
to just specify the required arguments and their types.- Parameters
args_schema (Optional[Type[BaseModel]]) – The schema for the tool. Defaults to None.
name (Optional[str]) – The name of the tool. Defaults to None.
description (Optional[str]) – The description of the tool. Defaults to None.
arg_types (Optional[Dict[str, Type]]) – A dictionary of argument names to types. Defaults to None.
- Returns
A BaseTool instance.
- Return type
Typed dict input:
from typing import List from typing_extensions import TypedDict from langchain_core.runnables import RunnableLambda class Args(TypedDict): a: int b: List[int] def f(x: Args) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool() as_tool.invoke({"a": 3, "b": [1, 2]})
dict
input, specifying schema viaargs_schema
:from typing import Any, Dict, List from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) class FSchema(BaseModel): """Apply a function to an integer and list of integers.""" a: int = Field(..., description="Integer") b: List[int] = Field(..., description="List of ints") runnable = RunnableLambda(f) as_tool = runnable.as_tool(FSchema) as_tool.invoke({"a": 3, "b": [1, 2]})
dict
input, specifying schema viaarg_types
:from typing import Any, Dict, List from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]}) as_tool.invoke({"a": 3, "b": [1, 2]})
String input:
from langchain_core.runnables import RunnableLambda def f(x: str) -> str: return x + "a" def g(x: str) -> str: return x + "z" runnable = RunnableLambda(f) | g as_tool = runnable.as_tool() as_tool.invoke("b")
New in version 0.2.14.
- async astream(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) AsyncIterator[BaseMessageChunk] ¶
Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.
- Parameters
input (LanguageModelInput) – The input to the Runnable.
config (Optional[RunnableConfig]) – The config to use for the Runnable. Defaults to None.
kwargs (Any) – Additional keyword arguments to pass to the Runnable.
stop (Optional[List[str]]) –
- Yields
The output of the Runnable.
- Return type
AsyncIterator[BaseMessageChunk]
- astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]] ¶
Beta
This API is in beta and may change in the future.
Generate a stream of events.
Use to create an iterator over StreamEvents that provide real-time information about the progress of the Runnable, including StreamEvents from intermediate results.
A StreamEvent is a dictionary with the following schema:
event
: str - Event names are of theformat: on_[runnable_type]_(start|stream|end).
name
: str - The name of the Runnable that generated the event.run_id
: str - randomly generated ID associated with the given execution ofthe Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
parent_ids
: List[str] - The IDs of the parent runnables thatgenerated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
tags
: Optional[List[str]] - The tags of the Runnable that generatedthe event.
metadata
: Optional[Dict[str, Any]] - The metadata of the Runnablethat generated the event.
data
: Dict[str, Any]
Below is a table that illustrates some evens that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
ATTENTION This reference table is for the V2 version of the schema.
event
name
chunk
input
output
on_chat_model_start
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[model name]
AIMessageChunk(content=”hello”)
on_chat_model_end
[model name]
{“messages”: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=”hello world”)
on_llm_start
[model name]
{‘input’: ‘hello’}
on_llm_stream
[model name]
‘Hello’
on_llm_end
[model name]
‘Hello human!’
on_chain_start
format_docs
on_chain_stream
format_docs
“hello world!, goodbye world!”
on_chain_end
format_docs
[Document(…)]
“hello world!, goodbye world!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[retriever name]
{“query”: “hello”}
on_retriever_end
[retriever name]
{“query”: “hello”}
[Document(…), ..]
on_prompt_start
[template_name]
{“question”: “hello”}
on_prompt_end
[template_name]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
In addition to the standard events, users can also dispatch custom events (see example below).
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
Attribute
Type
Description
name
str
A user defined name for the event.
data
Any
The data associated with the event. This can be anything, though we suggest making it JSON serializable.
Here are declarations associated with the standard events shown above:
format_docs:
def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool:
@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
prompt:
template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
Example: Dispatch Custom Event
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- Parameters
input (Any) – The input to the Runnable.
config (Optional[RunnableConfig]) – The config to use for the Runnable.
version (Literal['v1', 'v2']) – The version of the schema to use either v2 or v1. Users should use v2. v1 is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in v2.
include_names (Optional[Sequence[str]]) – Only include events from runnables with matching names.
include_types (Optional[Sequence[str]]) – Only include events from runnables with matching types.
include_tags (Optional[Sequence[str]]) – Only include events from runnables with matching tags.
exclude_names (Optional[Sequence[str]]) – Exclude events from runnables with matching names.
exclude_types (Optional[Sequence[str]]) – Exclude events from runnables with matching types.
exclude_tags (Optional[Sequence[str]]) – Exclude events from runnables with matching tags.
kwargs (Any) – Additional keyword arguments to pass to the Runnable. These will be passed to astream_log as this implementation of astream_events is built on top of astream_log.
- Yields
An async stream of StreamEvents.
- Raises
NotImplementedError – If the version is not v1 or v2.
- Return type
AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]
- batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.
- Parameters
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- Return type
List[Output]
- batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) Iterator[Tuple[int, Union[Output, Exception]]] ¶
Run invoke in parallel on a list of inputs, yielding results as they complete.
- Parameters
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- Return type
Iterator[Tuple[int, Union[Output, Exception]]]
- bind_tools(tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], *, tool_choice: Optional[Union[Dict[str, Dict], bool, str]] = None, **kwargs: Any) Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], BaseMessage] [source]¶
Bind tool-like objects to this chat model
- tool_choice: does not currently support “any”, “auto” choices like OpenAI
tool-calling API. should be a dict of the form to force this tool {“type”: “function”, “function”: {“name”: <<tool_name>>}}.
- Parameters
tools (Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]]) –
tool_choice (Optional[Union[Dict[str, Dict], bool, str]]) –
kwargs (Any) –
- Return type
Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], BaseMessage]
- call_as_llm(message: str, stop: Optional[List[str]] = None, **kwargs: Any) str ¶
Deprecated since version langchain-core==0.1.7: Use
invoke
instead.- Parameters
message (str) –
stop (Optional[List[str]]) –
kwargs (Any) –
- Return type
str
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output] ¶
Configure alternatives for Runnables that can be set at runtime.
- Parameters
which (ConfigurableField) – The ConfigurableField instance that will be used to select the alternative.
default_key (str) – The default key to use if no alternative is selected. Defaults to “default”.
prefix_keys (bool) – Whether to prefix the keys with the ConfigurableField id. Defaults to False.
**kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – A dictionary of keys to Runnable instances or callables that return Runnable instances.
- Returns
A new Runnable with the alternatives configured.
- Return type
RunnableSerializable[Input, Output]
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content )
- configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output] ¶
Configure particular Runnable fields at runtime.
- Parameters
**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – A dictionary of ConfigurableField instances to configure.
- Returns
A new Runnable with the fields configured.
- Return type
RunnableSerializable[Input, Output]
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content )
- generate(messages: List[List[BaseMessage]], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, run_id: Optional[UUID] = None, **kwargs: Any) LLMResult ¶
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched API.
- Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
- are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
- Parameters
messages (List[List[BaseMessage]]) – List of list of messages.
stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
**kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
tags (Optional[List[str]]) –
metadata (Optional[Dict[str, Any]]) –
run_name (Optional[str]) –
run_id (Optional[UUID]) –
**kwargs –
- Returns
- An LLMResult, which contains a list of candidate Generations for each input
prompt and additional model provider-specific output.
- Return type
- generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) LLMResult ¶
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched API.
- Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
- are building chains that are agnostic to the underlying language model
type (e.g., pure text completion models vs chat models).
- Parameters
prompts (List[PromptValue]) – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models).
stop (Optional[List[str]]) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
**kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
- Returns
- An LLMResult, which contains a list of candidate Generations for each input
prompt and additional model provider-specific output.
- Return type
- get_num_tokens(text: str) int ¶
Get the number of tokens present in the text.
Useful for checking if an input fits in a model’s context window.
- Parameters
text (str) – The string input to tokenize.
- Returns
The integer number of tokens in the text.
- Return type
int
- get_num_tokens_from_messages(messages: List[BaseMessage]) int ¶
Get the number of tokens in the messages.
Useful for checking if an input fits in a model’s context window.
- Parameters
messages (List[BaseMessage]) – The message inputs to tokenize.
- Returns
The sum of the number of tokens across the messages.
- Return type
int
- get_token_ids(text: str) List[int] ¶
Return the ordered ids of the tokens in a text.
- Parameters
text (str) – The string input to tokenize.
- Returns
- A list of ids corresponding to the tokens in the text, in order they occur
in the text.
- Return type
List[int]
- invoke(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) BaseMessage ¶
Transform a single input into an output. Override to implement.
- Parameters
input (LanguageModelInput) – The input to the Runnable.
config (Optional[RunnableConfig]) – A config to use when invoking the Runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details.
stop (Optional[List[str]]) –
kwargs (Any) –
- Returns
The output of the Runnable.
- Return type
- predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str ¶
Deprecated since version langchain-core==0.1.7: Use
invoke
instead.- Parameters
text (str) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- Return type
str
- predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage ¶
Deprecated since version langchain-core==0.1.7: Use
invoke
instead.- Parameters
messages (List[BaseMessage]) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- Return type
- stream(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) Iterator[BaseMessageChunk] ¶
Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output.
- Parameters
input (LanguageModelInput) – The input to the Runnable.
config (Optional[RunnableConfig]) – The config to use for the Runnable. Defaults to None.
kwargs (Any) – Additional keyword arguments to pass to the Runnable.
stop (Optional[List[str]]) –
- Yields
The output of the Runnable.
- Return type
Iterator[BaseMessageChunk]
- to_json() Union[SerializedConstructor, SerializedNotImplemented] ¶
Serialize the Runnable to JSON.
- Returns
A JSON-serializable representation of the Runnable.
- Return type
- with_structured_output(schema: Optional[Union[Dict, Type[BaseModel]]] = None, *, include_raw: bool = False, **kwargs: Any) Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], Union[Dict, BaseModel]] [source]¶
Model wrapper that returns outputs formatted to match the given schema.
- Parameters
schema (Optional[Union[Dict, Type[BaseModel]]]) – The output schema as a dict or a Pydantic class. If a Pydantic class then the model output will be an object of that class. If a dict then the model output will be a dict. With a Pydantic class the returned attributes will be validated, whereas with a dict they will not be. If method is “function_calling” and schema is a dict, then the dict must match the OpenAI function-calling spec or be a valid JSON schema with top level ‘title’ and ‘description’ keys specified.
include_raw (bool) – If False then only the parsed structured output is returned. If an error occurs during model output parsing it will be raised. If True then both the raw model response (a BaseMessage) and the parsed model response will be returned. If an error occurs during output parsing it will be caught and returned as well. The final output is always a dict with keys “raw”, “parsed”, and “parsing_error”.
kwargs (Any) – Any other args to bind to model,
self.bind(..., **kwargs)
.
- Returns
- If include_raw is True then a dict with keys:
raw: BaseMessage parsed: Optional[_DictOrPydantic] parsing_error: Optional[BaseException]
If include_raw is False then just _DictOrPydantic is returned, where _DictOrPydantic depends on the schema:
- If schema is a Pydantic class then _DictOrPydantic is the Pydantic
class.
If schema is a dict then _DictOrPydantic is a dict.
- Return type
A Runnable that takes any ChatModel input and returns as output
- Example: Pydantic schema (include_raw=False):
from langchain_community.chat_models import ChatLlamaCpp from langchain_core.pydantic_v1 import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = ChatLlamaCpp( temperature=0., model_path="./SanctumAI-meta-llama-3-8b-instruct.Q8_0.gguf", n_ctx=10000, n_gpu_layers=4, n_batch=200, max_tokens=512, n_threads=multiprocessing.cpu_count() - 1, repeat_penalty=1.5, top_p=0.5, stop=["<|end_of_text|>", "<|eot_id|>"], ) structured_llm = llm.with_structured_output(AnswerWithJustification) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> AnswerWithJustification( # answer='They weigh the same', # justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.' # )
- Example: Pydantic schema (include_raw=True):
from langchain_community.chat_models import ChatLlamaCpp from langchain_core.pydantic_v1 import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = ChatLlamaCpp( temperature=0., model_path="./SanctumAI-meta-llama-3-8b-instruct.Q8_0.gguf", n_ctx=10000, n_gpu_layers=4, n_batch=200, max_tokens=512, n_threads=multiprocessing.cpu_count() - 1, repeat_penalty=1.5, top_p=0.5, stop=["<|end_of_text|>", "<|eot_id|>"], ) structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> { # 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}), # 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'), # 'parsing_error': None # }
- Example: dict schema (include_raw=False):
from langchain_community.chat_models import ChatLlamaCpp from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils.function_calling import convert_to_openai_tool class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str dict_schema = convert_to_openai_tool(AnswerWithJustification) llm = ChatLlamaCpp( temperature=0., model_path="./SanctumAI-meta-llama-3-8b-instruct.Q8_0.gguf", n_ctx=10000, n_gpu_layers=4, n_batch=200, max_tokens=512, n_threads=multiprocessing.cpu_count() - 1, repeat_penalty=1.5, top_p=0.5, stop=["<|end_of_text|>", "<|eot_id|>"], ) structured_llm = llm.with_structured_output(dict_schema) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> { # 'answer': 'They weigh the same', # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.' # }