langchain_community.chat_models.gpt_router
.GPTRouter¶
Note
GPTRouter 实现了标准的 Runnable Interface
。 🏃
Runnable Interface
具有在 runnables 上可用的其他方法,例如 with_types
、 with_retry
、 assign
、 bind
、 get_graph
等。
- class langchain_community.chat_models.gpt_router.GPTRouter[source]¶
Bases:
BaseChatModel
Writesonic Inc. 的 GPTRouter。
有关更多信息,请参阅 https://gpt-router.writesonic.com/docs
- param cache: Union[BaseCache, bool, None] = None¶
是否缓存响应。
如果为 true,将使用全局缓存。
如果为 false,将不使用缓存
如果为 None,如果已设置全局缓存,则使用全局缓存,否则不使用缓存。
如果是 BaseCache 的实例,将使用提供的缓存。
模型流式传输方法目前不支持缓存。
- param callback_manager: Optional[BaseCallbackManager] = None¶
[已弃用] 要添加到运行跟踪的回调管理器。
- param callbacks: Callbacks = None¶
要添加到运行跟踪的回调。
- param custom_get_token_ids: Optional[Callable[[str], List[int]]] = None¶
用于计算令牌的可选编码器。
- param gpt_router_api_base: str = None¶
WriteSonic GPTRouter 自定义端点
- param gpt_router_api_key: Optional[SecretStr] = None¶
WriteSonic GPTRouter API 密钥
- Constraints
type = string
writeOnly = True
format = password
- param max_retries: int = 4¶
生成时要进行的最大重试次数。
- param max_tokens: int = 256¶
- param metadata: Optional[Dict[str, Any]] = None¶
要添加到运行跟踪的元数据。
- param model_kwargs: Dict[str, Any] [Optional]¶
保存未明确指定的 create 调用有效的任何模型参数。
- param models_priority_list: List[GPTRouterModel] [Required]¶
- Constraints
minItems = 1
- param n: int = 1¶
为每个提示生成的聊天完成次数。
- param rate_limiter: Optional[BaseRateLimiter] = None¶
用于限制请求数量的可选速率限制器。
- param streaming: bool = False¶
是否流式传输结果。
- param tags: Optional[List[str]] = None¶
要添加到运行跟踪的标签。
- param temperature: float = 0.7¶
要使用的采样温度。
- param verbose [Optional]¶
是否打印响应文本。
- __call__(messages: List[BaseMessage], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) BaseMessage ¶
Deprecated since version langchain-core==0.1.7: Use
invoke
instead.- Parameters
messages (List[BaseMessage]) –
stop (Optional[List[str]]) –
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
kwargs (Any) –
- Return type
- async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
默认实现使用 asyncio.gather 并行运行 ainvoke。
批处理的默认实现对于 IO 绑定 runnable 非常有效。
如果子类可以更有效地进行批处理,则应覆盖此方法;例如,如果底层 Runnable 使用支持批处理模式的 API。
- Parameters
inputs (List[Input]) – Runnable 的输入列表。
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – 调用 Runnable 时要使用的配置。该配置支持标准键,例如用于跟踪目的的“tags”、“metadata”,用于控制并行执行多少工作的“max_concurrency”以及其他键。有关更多详细信息,请参阅 RunnableConfig。默认为 None。
return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。
kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。
- Returns
来自 Runnable 的输出列表。
- Return type
List[Output]
- async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]] ¶
并行运行输入列表上的 ainvoke,并在完成时生成结果。
- Parameters
inputs (Sequence[Input]) – Runnable 的输入列表。
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – 调用 Runnable 时要使用的配置。该配置支持标准键,例如用于跟踪目的的“tags”、“metadata”,用于控制并行执行多少工作的“max_concurrency”以及其他键。有关更多详细信息,请参阅 RunnableConfig。默认为 None。默认为 None。
return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。
kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。
- Yields
输入索引和 Runnable 输出的元组。
- Return type
AsyncIterator[Tuple[int, Union[Output, Exception]]]
- async agenerate(messages: List[List[BaseMessage]], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, run_id: Optional[UUID] = None, **kwargs: Any) LLMResult ¶
异步地将一系列提示传递给模型并返回生成结果。
此方法应利用模型的批量调用,这些模型公开了批量 API。
- 当您想要
利用批量调用时,请使用此方法,
需要比模型输出的不仅仅是最高的生成值更多的输出时,请使用此方法,
- 正在构建对底层语言模型不可知的链时
类型(例如,纯文本完成模型与聊天模型)。
- Parameters
messages (List[List[BaseMessage]]) – 消息列表的列表。
stop (Optional[List[str]]) – 生成时要使用的停止词。模型输出在第一次出现任何这些子字符串时被截断。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 要传递的回调。用于在整个生成过程中执行其他功能,例如日志记录或流式传输。
**kwargs (Any) – 任意其他关键字参数。这些通常传递给模型提供程序 API 调用。
tags (Optional[List[str]]) –
metadata (Optional[Dict[str, Any]]) –
run_name (Optional[str]) –
run_id (Optional[UUID]) –
**kwargs –
- Returns
- 一个 LLMResult,其中包含每个输入的候选 Generations 列表
提示和附加的模型提供商特定的输出。
- Return type
- async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) LLMResult ¶
异步传递一系列提示并返回模型生成结果。
此方法应利用模型的批量调用,这些模型公开了批量 API。
- 当您想要
利用批量调用时,请使用此方法,
需要比模型输出的不仅仅是最高的生成值更多的输出时,请使用此方法,
- 正在构建对底层语言模型不可知的链时
类型(例如,纯文本完成模型与聊天模型)。
- Parameters
prompts (List[PromptValue]) – PromptValue 列表。PromptValue 是可以转换为匹配任何语言模型格式的对象(纯文本生成模型的字符串,以及聊天模型的基础消息)。
stop (Optional[List[str]]) – 生成时要使用的停止词。模型输出在第一次出现任何这些子字符串时被截断。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 要传递的回调。用于在整个生成过程中执行其他功能,例如日志记录或流式传输。
**kwargs (Any) – 任意其他关键字参数。这些通常传递给模型提供程序 API 调用。
- Returns
- 一个 LLMResult,其中包含每个输入的候选 Generations 列表
提示和附加的模型提供商特定的输出。
- Return type
- async ainvoke(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) BaseMessage ¶
ainvoke
的默认实现,从线程中调用invoke
。即使 Runnable 没有实现原生的异步
invoke
版本,默认实现也允许使用异步代码。如果子类可以异步运行,则应重写此方法。
- Parameters
input (LanguageModelInput) –
config (Optional[RunnableConfig]) –
stop (Optional[List[str]]) –
kwargs (Any) –
- Return type
- async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str ¶
Deprecated since version langchain-core==0.1.7: 请使用
ainvoke
代替。- Parameters
text (str) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- Return type
str
- async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage ¶
Deprecated since version langchain-core==0.1.7: 请使用
ainvoke
代替。- Parameters
messages (List[BaseMessage]) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- Return type
- as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool ¶
Beta
此 API 处于 Beta 阶段,未来可能会发生变化。
从 Runnable 创建一个 BaseTool。
as_tool
将从 Runnable 实例化一个具有名称、描述和args_schema
的 BaseTool。如果可能,schema 会从runnable.get_input_schema
推断。或者(例如,如果 Runnable 接受 dict 作为输入,并且未键入特定的 dict 键),则可以使用args_schema
直接指定 schema。您也可以传递arg_types
以仅指定必需的参数及其类型。- Parameters
args_schema (Optional[Type[BaseModel]]) – 工具的 schema。默认为 None。
name (Optional[str]) – 工具的名称。默认为 None。
description (Optional[str]) – 工具的描述。默认为 None。
arg_types (Optional[Dict[str, Type]]) – 参数名称到类型的字典。默认为 None。
- Returns
一个 BaseTool 实例。
- Return type
类型化字典输入
from typing import List from typing_extensions import TypedDict from langchain_core.runnables import RunnableLambda class Args(TypedDict): a: int b: List[int] def f(x: Args) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool() as_tool.invoke({"a": 3, "b": [1, 2]})
dict
输入,通过args_schema
指定 schemafrom typing import Any, Dict, List from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) class FSchema(BaseModel): """Apply a function to an integer and list of integers.""" a: int = Field(..., description="Integer") b: List[int] = Field(..., description="List of ints") runnable = RunnableLambda(f) as_tool = runnable.as_tool(FSchema) as_tool.invoke({"a": 3, "b": [1, 2]})
dict
输入,通过arg_types
指定 schemafrom typing import Any, Dict, List from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]}) as_tool.invoke({"a": 3, "b": [1, 2]})
字符串输入
from langchain_core.runnables import RunnableLambda def f(x: str) -> str: return x + "a" def g(x: str) -> str: return x + "z" runnable = RunnableLambda(f) | g as_tool = runnable.as_tool() as_tool.invoke("b")
0.2.14 版本新增。
- async astream(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) AsyncIterator[BaseMessageChunk] ¶
astream
的默认实现,它调用ainvoke
。如果子类支持流式输出,则应重写此方法。- Parameters
input (LanguageModelInput) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。
kwargs (Any) – 传递给 Runnable 的其他关键字参数。
stop (Optional[List[str]]) –
- Yields
Runnable 的输出。
- Return type
AsyncIterator[BaseMessageChunk]
- astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]] ¶
Beta
此 API 处于 Beta 阶段,未来可能会发生变化。
生成事件流。
用于创建一个 StreamEvents 的迭代器,该迭代器提供有关 Runnable 进度的实时信息,包括来自中间结果的 StreamEvents。
StreamEvent 是一个具有以下 schema 的字典
event
: str - 事件名称的格式为格式:on_[runnable_type]_(start|stream|end)。
name
: str - 生成事件的 Runnable 的名称。run_id
: str - 随机生成的 ID,与给定 Runnable 执行相关联,该 Runnable 发出事件。作为父 Runnable 执行的一部分调用的子 Runnable 将被分配其自己唯一的 ID。Runnable 发出事件的给定执行的关联的随机生成 ID。作为父 Runnable 执行一部分调用的子 Runnable 会被分配它自己的唯一 ID。
parent_ids
: List[str] - 生成事件的父 runnable 的 ID 列表。根 Runnable 将具有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。生成事件的父 runnable 的 ID。根 Runnable 将有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。v1 版本的 API 将返回一个空列表。
tags
: Optional[List[str]] - 生成事件的 Runnable 的标签。生成事件的 Runnable 的标签。
metadata
: Optional[Dict[str, Any]] - 生成事件的 Runnable 的元数据。生成事件的 Runnable 的元数据。
data
: Dict[str, Any]
下面是一个表格,说明了各种链可能发出的一些事件。为了简洁起见,元数据字段已从表格中省略。链定义已包含在表格之后。
注意 此参考表适用于 schema 的 V2 版本。
事件
名称
块
输入
输出
on_chat_model_start
[模型名称]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[模型名称]
AIMessageChunk(content=”hello”)
on_chat_model_end
[模型名称]
{“messages”: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=”hello world”)
on_llm_start
[模型名称]
{‘input’: ‘hello’}
on_llm_stream
[模型名称]
‘Hello’
on_llm_end
[模型名称]
‘Hello human!’
on_chain_start
format_docs
on_chain_stream
format_docs
“hello world!, goodbye world!”
on_chain_end
format_docs
[Document(…)]
“hello world!, goodbye world!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[检索器名称]
{“query”: “hello”}
on_retriever_end
[检索器名称]
{“query”: “hello”}
[Document(…), ..]
on_prompt_start
[模板名称]
{“question”: “hello”}
on_prompt_end
[模板名称]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
除了标准事件外,用户还可以调度自定义事件(请参见下面的示例)。
自定义事件将仅在 API 的 v2 版本中显示!
自定义事件具有以下格式
属性
类型
描述
名称
str
事件的用户定义名称。
data
Any
与事件关联的数据。这可以是任何内容,但我们建议使其可 JSON 序列化。
以下是与上面显示的标准事件关联的声明
format_docs
:def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool
:@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
prompt
:template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
示例
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
示例:调度自定义事件
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- Parameters
input (Any) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。
version (Literal['v1', 'v2']) – 要使用的 schema 版本,可以是 v2 或 v1。用户应使用 v2。v1 用于向后兼容,将在 0.4.0 中弃用。在 API 稳定之前,不会分配默认值。自定义事件将仅在 v2 中显示。
include_names (Optional[Sequence[str]]) – 仅包含来自名称匹配的 runnable 的事件。
include_types (Optional[Sequence[str]]) – 仅包含来自类型匹配的 runnable 的事件。
include_tags (Optional[Sequence[str]]) – 仅包含来自标签匹配的 runnable 的事件。
exclude_names (Optional[Sequence[str]]) – 排除来自名称匹配的 runnable 的事件。
exclude_types (Optional[Sequence[str]]) – 排除来自类型匹配的 runnable 的事件。
exclude_tags (Optional[Sequence[str]]) – 排除来自标签匹配的 runnable 的事件。
kwargs (Any) – 传递给 Runnable 的其他关键字参数。这些参数将传递给 astream_log,因为 astream_events 的此实现构建在 astream_log 之上。
- Yields
StreamEvents 的异步流。
Raises
NotImplementedError – 如果版本不是 v1 或 v2。
- Return type
AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]
- batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
默认实现使用线程池执行器并行运行 invoke。
批处理的默认实现对于 IO 绑定 runnable 非常有效。
如果子类可以更有效地进行批处理,则应覆盖此方法;例如,如果底层 Runnable 使用支持批处理模式的 API。
- Parameters
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- Return type
List[Output]
- batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) Iterator[Tuple[int, Union[Output, Exception]]] ¶
在输入列表上并行运行 invoke,并在结果完成时生成结果。
- Parameters
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- Return type
Iterator[Tuple[int, Union[Output, Exception]]]
- bind_tools(tools: Sequence[Union[Dict[str, Any], Type, Callable, BaseTool]], **kwargs: Any) Runnable[LanguageModelInput, BaseMessage] ¶
- Parameters
tools (Sequence[Union[Dict[str, Any], Type, Callable, BaseTool]]) –
kwargs (Any) –
- Return type
Runnable[LanguageModelInput, BaseMessage]
- call_as_llm(message: str, stop: Optional[List[str]] = None, **kwargs: Any) str ¶
Deprecated since version langchain-core==0.1.7: Use
invoke
instead.- Parameters
message (str) –
stop (Optional[List[str]]) –
kwargs (Any) –
- Return type
str
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output] ¶
配置可在运行时设置的 Runnable 的备选项。
- Parameters
which (ConfigurableField) – 将用于选择备选项的 ConfigurableField 实例。
default_key (str) – 如果未选择任何备选项,则使用的默认键。默认为 “default”。
prefix_keys (bool) – 是否使用 ConfigurableField id 作为键的前缀。默认为 False。
**kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – 键到 Runnable 实例或返回 Runnable 实例的可调用对象的字典。
- Returns
配置了备选项的新 Runnable。
- Return type
RunnableSerializable[Input, Output]
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content )
- configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output] ¶
在运行时配置特定的 Runnable 字段。
- Parameters
**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – 要配置的 ConfigurableField 实例的字典。
- Returns
配置了字段的新 Runnable。
- Return type
RunnableSerializable[Input, Output]
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content )
- generate(messages: List[List[BaseMessage]], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, run_id: Optional[UUID] = None, **kwargs: Any) LLMResult ¶
将一系列提示传递给模型并返回模型生成结果。
此方法应利用模型的批量调用,这些模型公开了批量 API。
- 当您想要
利用批量调用时,请使用此方法,
需要比模型输出的不仅仅是最高的生成值更多的输出时,请使用此方法,
- 正在构建对底层语言模型不可知的链时
类型(例如,纯文本完成模型与聊天模型)。
- Parameters
messages (List[List[BaseMessage]]) – 消息列表的列表。
stop (Optional[List[str]]) – 生成时要使用的停止词。模型输出在第一次出现任何这些子字符串时被截断。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 要传递的回调。用于在整个生成过程中执行其他功能,例如日志记录或流式传输。
**kwargs (Any) – 任意其他关键字参数。这些通常传递给模型提供程序 API 调用。
tags (Optional[List[str]]) –
metadata (Optional[Dict[str, Any]]) –
run_name (Optional[str]) –
run_id (Optional[UUID]) –
**kwargs –
- Returns
- 一个 LLMResult,其中包含每个输入的候选 Generations 列表
提示和附加的模型提供商特定的输出。
- Return type
- generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) LLMResult ¶
将一系列提示传递给模型并返回模型生成结果。
此方法应利用模型的批量调用,这些模型公开了批量 API。
- 当您想要
利用批量调用时,请使用此方法,
需要比模型输出的不仅仅是最高的生成值更多的输出时,请使用此方法,
- 正在构建对底层语言模型不可知的链时
类型(例如,纯文本完成模型与聊天模型)。
- Parameters
prompts (List[PromptValue]) – PromptValue 列表。PromptValue 是可以转换为匹配任何语言模型格式的对象(纯文本生成模型的字符串,以及聊天模型的基础消息)。
stop (Optional[List[str]]) – 生成时要使用的停止词。模型输出在第一次出现任何这些子字符串时被截断。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 要传递的回调。用于在整个生成过程中执行其他功能,例如日志记录或流式传输。
**kwargs (Any) – 任意其他关键字参数。这些通常传递给模型提供程序 API 调用。
- Returns
- 一个 LLMResult,其中包含每个输入的候选 Generations 列表
提示和附加的模型提供商特定的输出。
- Return type
- get_num_tokens(text: str) int ¶
获取文本中存在的 token 数量。
用于检查输入是否适合模型的上下文窗口。
- Parameters
text (str) – 要进行 token 化的字符串输入。
- Returns
文本中 token 的整数数量。
- Return type
int
- get_num_tokens_from_messages(messages: List[BaseMessage]) int ¶
获取消息中的 token 数量。
用于检查输入是否适合模型的上下文窗口。
- Parameters
messages (List[BaseMessage]) – 要进行 token 化的消息输入。
- Returns
所有消息的 token 数量之和。
- Return type
int
- get_token_ids(text: str) List[int] ¶
返回文本中 token 的有序 id 列表。
- Parameters
text (str) – 要进行 token 化的字符串输入。
- Returns
- 与文本中的 token 相对应的 id 列表,按照它们在文本中出现的顺序排列。
在文本中。
- Return type
List[int]
- invoke(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) BaseMessage ¶
将单个输入转换为输出。覆盖此方法以实现。
- Parameters
input (LanguageModelInput) – Runnable 的输入。
config (Optional[RunnableConfig]) – 调用 Runnable 时使用的配置。该配置支持标准键,例如用于跟踪目的的 ‘tags’、‘metadata’,用于控制并行执行量的 ‘max_concurrency’ 以及其他键。请参阅 RunnableConfig 以了解更多详细信息。
stop (Optional[List[str]]) –
kwargs (Any) –
- Returns
Runnable 的输出。
- Return type
- predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str ¶
Deprecated since version langchain-core==0.1.7: Use
invoke
instead.- Parameters
text (str) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- Return type
str
- predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage ¶
Deprecated since version langchain-core==0.1.7: Use
invoke
instead.- Parameters
messages (List[BaseMessage]) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- Return type
- stream(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) Iterator[BaseMessageChunk] ¶
stream 的默认实现,它调用 invoke。如果子类支持流式输出,则应覆盖此方法。
- Parameters
input (LanguageModelInput) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。
kwargs (Any) – 传递给 Runnable 的其他关键字参数。
stop (Optional[List[str]]) –
- Yields
Runnable 的输出。
- Return type
Iterator[BaseMessageChunk]
- to_json() Union[SerializedConstructor, SerializedNotImplemented] ¶
将 Runnable 序列化为 JSON。
- Returns
Runnable 的 JSON 可序列化表示形式。
- Return type
- with_structured_output(schema: Union[Dict, Type], *, include_raw: bool = False, **kwargs: Any) Runnable[LanguageModelInput, Union[Dict, BaseModel]] ¶
返回格式化为匹配给定 schema 的输出的模型包装器。
- Parameters
schema (Union[Dict, Type]) –
- 输出 schema。可以作为以下内容传入:
OpenAI 函数/工具 schema,
JSON Schema,
TypedDict 类(在 0.2.26 版本中添加支持),
或 Pydantic 类。
如果
schema
是 Pydantic 类,则模型输出将是该类的 Pydantic 实例,并且模型生成的字段将由 Pydantic 类验证。否则,模型输出将是一个 dict,并且不会被验证。有关如何在指定 Pydantic 或 TypedDict 类时正确指定 schema 字段的类型和描述的更多信息,请参阅langchain_core.utils.function_calling.convert_to_openai_tool()
。Changed in version 0.2.26: 在 0.2.26 版本中添加了对 TypedDict 类的支持。
include_raw (bool) – 如果为 False,则仅返回解析后的结构化输出。如果在模型输出解析期间发生错误,则会引发错误。如果为 True,则将返回原始模型响应 (BaseMessage) 和解析后的模型响应。如果在输出解析期间发生错误,则会捕获该错误并也将其返回。最终输出始终是一个包含键 “raw”、“parsed” 和 “parsing_error” 的字典。
kwargs (Any) –
- Returns
一个 Runnable,它接受与
langchain_core.language_models.chat.BaseChatModel
相同的输入。如果
include_raw
为 False 且schema
是 Pydantic 类,则 Runnable 输出schema
的实例(即 Pydantic 对象)。否则,如果
include_raw
为 False,则 Runnable 输出一个 dict。- 如果
include_raw
为 True,则 Runnable 输出一个包含以下键的 dict "raw"
: BaseMessage"parsed"
: 如果存在解析错误,则为 None,否则类型取决于上述schema
。"parsing_error"
: Optional[BaseException]
- 如果
- Return type
- 示例:Pydantic schema (include_raw=False)
from langchain_core.pydantic_v1 import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = ChatModel(model="model-name", temperature=0) structured_llm = llm.with_structured_output(AnswerWithJustification) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> AnswerWithJustification( # answer='They weigh the same', # justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.' # )
- 示例:Pydantic schema (include_raw=True)
from langchain_core.pydantic_v1 import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = ChatModel(model="model-name", temperature=0) structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> { # 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}), # 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'), # 'parsing_error': None # }
- 示例:Dict schema (include_raw=False)
from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils.function_calling import convert_to_openai_tool class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str dict_schema = convert_to_openai_tool(AnswerWithJustification) llm = ChatModel(model="model-name", temperature=0) structured_llm = llm.with_structured_output(dict_schema) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> { # 'answer': 'They weigh the same', # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.' # }
- property lc_serializable: bool¶