langchain_community.chat_models.everlyai
.ChatEverlyAI¶
注意
ChatEverlyAI 实现了标准的 Runnable 接口
。 🏃
Runnable 接口
在可运行对象上还有其他可用方法,例如 with_types
、 with_retry
、 assign
、 bind
、 get_graph
等。
- class langchain_community.chat_models.everlyai.ChatEverlyAI[source]¶
基类:
ChatOpenAI
EverlyAI 聊天大语言模型。
要使用,您应该安装
openai
python 包,并设置环境变量EVERLYAI_API_KEY
为您的 API 密钥。或者,您可以使用 everlyai_api_key 关键字参数。任何可以传递给 openai.create 调用的有效参数都可以传入,即使该类上没有显式保存。
示例
from langchain_community.chat_models import ChatEverlyAI chat = ChatEverlyAI(model_name="meta-llama/Llama-2-7b-chat-hf")
- param available_models: Optional[Set[str]]] = None¶
来自 EverlyAI API 的可用模型。
- param cache: Union[BaseCache, bool, None] = None¶
是否缓存响应。
如果为 true,将使用全局缓存。
如果为 false,将不使用缓存
如果为 None,如果已设置全局缓存,则使用全局缓存,否则不使用缓存。
如果是 BaseCache 的实例,将使用提供的缓存。
当前模型的流式方法不支持缓存。
- param callback_manager: Optional[BaseCallbackManager] = None¶
[已弃用] 要添加到运行跟踪的回调管理器。
- param callbacks: Callbacks = None¶
要添加到运行跟踪的回调。
- param custom_get_token_ids: Optional[Callable[[str], List[int]]] = None¶
用于计算令牌的可选编码器。
- param default_headers: Union[Mapping[str, str], None] = None¶
- param default_query: Union[Mapping[str, object], None] = None¶
- param everlyai_api_base: str = 'https://everlyai.xyz/hosted'¶
API 请求的基本 URL 路径。
- param everlyai_api_key: Optional[str] = None¶
EverlyAI Endpoints API 密钥。
- param http_client: Union[Any, None] = None¶
可选的 httpx.Client。
- param max_retries: int = 2¶
生成时要进行的最大重试次数。
- param max_tokens: Optional[int] = None¶
要生成的最大令牌数。
- param metadata: Optional[Dict[str, Any]] = None¶
要添加到运行跟踪的元数据。
- param model_kwargs: Dict[str, Any] [Optional]¶
包含 create 调用有效的任何模型参数,这些参数未显式指定。
- param model_name: str = 'meta-llama/Llama-2-7b-chat-hf' (别名 'model')¶
要使用的模型名称。
- param n: int = 1¶
为每个提示生成的聊天完成次数。
- param openai_api_base: Optional[str] = None (别名 'base_url')¶
API 请求的基本 URL 路径,如果不使用代理或服务模拟器,请留空。
- param openai_api_key: Optional[str] = None (别名 'api_key')¶
如果未提供,则从环境变量 OPENAI_API_KEY 自动推断。
- param openai_organization: Optional[str] = None (别名 'organization')¶
如果未提供,则从环境变量 OPENAI_ORG_ID 自动推断。
- param openai_proxy: Optional[str] = None¶
- param rate_limiter: Optional[BaseRateLimiter] = None¶
用于限制请求数量的可选速率限制器。
- param request_timeout: Union[float, Tuple[float, float], Any, None] = None (别名 'timeout')¶
对 OpenAI 完成 API 请求的超时时间。可以是 float、httpx.Timeout 或 None。
- param streaming: bool = False¶
是否流式传输结果。
- param tags: Optional[List[str]] = None¶
要添加到运行跟踪的标签。
- param temperature: float = 0.7¶
要使用的采样温度。
- param tiktoken_model_name: Optional[str] = None¶
使用此类时要传递给 tiktoken 的模型名称。 Tiktoken 用于计算文档中的令牌数量,以约束它们在某个限制之下。默认情况下,设置为 None 时,这将与嵌入模型名称相同。但是,在某些情况下,您可能希望将此 Embedding 类与 tiktoken 不支持的模型名称一起使用。这可能包括使用 Azure 嵌入或使用许多模型提供商之一,这些提供商公开了类似 OpenAI 的 API,但具有不同的模型。在这些情况下,为了避免在调用 tiktoken 时出错,您可以在此处指定要使用的模型名称。
- param verbose [Optional]¶
是否打印出响应文本。
- __call__(messages: List[BaseMessage], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) BaseMessage ¶
Deprecated since version langchain-core==0.1.7: 使用
invoke
代替。- 参数
messages (List[BaseMessage]) –
stop (Optional[List[str]]) –
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
kwargs (Any) –
- 返回类型
- async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
默认实现使用 asyncio.gather 并行运行 ainvoke。
批量处理的默认实现非常适用于 IO 绑定的可运行对象。
子类应该覆盖此方法,如果它们可以更有效地进行批量处理;例如,如果底层的 Runnable 使用支持批量模式的 API。
- 参数
inputs (List[Input]) – 可运行对象的输入列表。
config (可选[Union[RunnableConfig, List[RunnableConfig]]]) – 调用 Runnable 时使用的配置。该配置支持标准键,例如用于跟踪目的的 ‘tags’、‘metadata’,用于控制并行工作量的 ‘max_concurrency’ 以及其他键。有关更多详细信息,请参阅 RunnableConfig。默认为 None。
return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。
kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。
- 返回值
来自 Runnable 的输出列表。
- 返回类型
List[Output]
- async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]] ¶
并行地对输入列表运行 ainvoke,并在完成时生成结果。
- 参数
inputs (Sequence[Input]) – Runnable 的输入列表。
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – 调用 Runnable 时使用的配置。该配置支持标准键,例如用于跟踪目的的 ‘tags’、‘metadata’,用于控制并行工作量的 ‘max_concurrency’ 以及其他键。有关更多详细信息,请参阅 RunnableConfig。默认为 None。默认为 None。
return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。
kwargs (Optional[Any]) – 传递给 Runnable 的其他关键字参数。
- Yields
一个元组,包含输入的索引和来自 Runnable 的输出。
- 返回类型
AsyncIterator[Tuple[int, Union[Output, Exception]]]
- async agenerate(messages: List[List[BaseMessage]], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, run_id: Optional[UUID] = None, **kwargs: Any) LLMResult ¶
异步地将一系列提示传递给模型并返回生成结果。
此方法应利用批量调用来处理公开批量 API 的模型。
- 当您想要以下操作时,请使用此方法:
利用批量调用,
需要从模型获得比仅生成最佳值更多的输出,
- 构建与底层语言模型无关的链
类型(例如,纯文本完成模型与聊天模型)。
- 参数
messages (List[List[BaseMessage]]) – 消息列表的列表。
stop (Optional[List[str]]) – 生成时使用的停止词。模型输出在首次出现任何这些子字符串时被截断。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 要传递的回调。用于在整个生成过程中执行附加功能,例如日志记录或流式传输。
**kwargs (Any) – 任意附加关键字参数。这些通常传递给模型提供商 API 调用。
tags (Optional[List[str]]) –
metadata (Optional[Dict[str, Any]]) –
run_name (Optional[str]) –
run_id (Optional[UUID]) –
**kwargs –
- 返回值
- 一个 LLMResult,其中包含每个输入的候选 Generations 列表
提示和附加的模型提供商特定的输出。
- 返回类型
- async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) LLMResult ¶
异步地传递一系列提示并返回模型生成结果。
此方法应利用批量调用来处理公开批量 API 的模型。
- 当您想要以下操作时,请使用此方法:
利用批量调用,
需要从模型获得比仅生成最佳值更多的输出,
- 构建与底层语言模型无关的链
类型(例如,纯文本完成模型与聊天模型)。
- 参数
prompts (List[PromptValue]) – PromptValue 列表。PromptValue 是一个可以转换为匹配任何语言模型格式的对象(纯文本生成模型的字符串和聊天模型的 BaseMessages)。
stop (Optional[List[str]]) – 生成时使用的停止词。模型输出在首次出现任何这些子字符串时被截断。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 要传递的回调。用于在整个生成过程中执行附加功能,例如日志记录或流式传输。
**kwargs (Any) – 任意附加关键字参数。这些通常传递给模型提供商 API 调用。
- 返回值
- 一个 LLMResult,其中包含每个输入的候选 Generations 列表
提示和附加的模型提供商特定的输出。
- 返回类型
- async ainvoke(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) BaseMessage ¶
ainvoke 的默认实现,从线程调用 invoke。
即使 Runnable 没有实现 invoke 的原生异步版本,默认实现也允许使用异步代码。
如果子类可以异步运行,则应覆盖此方法。
- 参数
input (LanguageModelInput) –
config (Optional[RunnableConfig]) –
stop (Optional[List[str]]) –
kwargs (Any) –
- 返回类型
- async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str ¶
Deprecated since version langchain-core==0.1.7: 请使用
ainvoke
代替。- 参数
text (str) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- 返回类型
str
- async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage ¶
Deprecated since version langchain-core==0.1.7: 请使用
ainvoke
代替。- 参数
messages (List[BaseMessage]) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- 返回类型
- as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool ¶
Beta
此 API 处于 Beta 阶段,未来可能会发生变化。
从 Runnable 创建一个 BaseTool。
as_tool
将从 Runnable 实例化一个具有名称、描述和args_schema
的 BaseTool。在可能的情况下,模式从runnable.get_input_schema
推断。或者(例如,如果 Runnable 接受 dict 作为输入,并且未键入特定的 dict 键),可以直接使用args_schema
指定模式。您也可以传递arg_types
以仅指定必需的参数及其类型。- 参数
args_schema (Optional[Type[BaseModel]]) – 工具的模式。默认为 None。
name (Optional[str]) – 工具的名称。默认为 None。
description (Optional[str]) – 工具的描述。默认为 None。
arg_types (Optional[Dict[str, Type]]) – 参数名称到类型的字典。默认为 None。
- 返回值
一个 BaseTool 实例。
- 返回类型
类型化字典输入
from typing import List from typing_extensions import TypedDict from langchain_core.runnables import RunnableLambda class Args(TypedDict): a: int b: List[int] def f(x: Args) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool() as_tool.invoke({"a": 3, "b": [1, 2]})
dict
输入,通过args_schema
指定模式from typing import Any, Dict, List from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) class FSchema(BaseModel): """Apply a function to an integer and list of integers.""" a: int = Field(..., description="Integer") b: List[int] = Field(..., description="List of ints") runnable = RunnableLambda(f) as_tool = runnable.as_tool(FSchema) as_tool.invoke({"a": 3, "b": [1, 2]})
dict
输入,通过arg_types
指定模式from typing import Any, Dict, List from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]}) as_tool.invoke({"a": 3, "b": [1, 2]})
字符串输入
from langchain_core.runnables import RunnableLambda def f(x: str) -> str: return x + "a" def g(x: str) -> str: return x + "z" runnable = RunnableLambda(f) | g as_tool = runnable.as_tool() as_tool.invoke("b")
0.2.14 版本新增功能。
- async astream(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) AsyncIterator[BaseMessageChunk] ¶
astream 的默认实现,它调用 ainvoke。如果子类支持流式输出,则应覆盖此方法。
- 参数
input (LanguageModelInput) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。
kwargs (Any) – 要传递给 Runnable 的其他关键字参数。
stop (Optional[List[str]]) –
- Yields
Runnable 的输出。
- 返回类型
AsyncIterator[BaseMessageChunk]
- astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]] ¶
Beta
此 API 处于 Beta 阶段,未来可能会发生变化。
生成事件流。
用于创建一个 StreamEvents 的迭代器,该迭代器提供关于 Runnable 进度的实时信息,包括来自中间结果的 StreamEvents。
StreamEvent 是一个具有以下模式的字典
event
: str - 事件名称格式为:format: on_[runnable_type]_(start|stream|end)。
name
: str - 生成事件的 Runnable 的名称。run_id
: str - 随机生成的 ID,与给定 Runnable 执行相关联,该 Runnable 发出事件。作为父 Runnable 执行一部分调用的子 Runnable 将被分配其自己的唯一 ID。the Runnable that emitted the event. A child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID.
parent_ids
: List[str] - 生成事件的父 runnable 的 ID 列表。根 Runnable 将有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
tags
: Optional[List[str]] - 生成事件的 Runnable 的标签。the event.
metadata
: Optional[Dict[str, Any]] - 生成事件的 Runnable 的元数据。that generated the event.
data
: Dict[str, Any]
下面是一个表格,说明了各种链可能发出的一些事件。为了简洁起见,元数据字段已从表格中省略。链定义已包含在表格之后。
注意 此参考表适用于 V2 版本的模式。
event
name
chunk
input
output
on_chat_model_start
[模型名称]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[模型名称]
AIMessageChunk(content=”hello”)
on_chat_model_end
[模型名称]
{“messages”: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=”hello world”)
on_llm_start
[模型名称]
{‘input’: ‘hello’}
on_llm_stream
[模型名称]
‘Hello’
on_llm_end
[模型名称]
‘Hello human!’
on_chain_start
format_docs
on_chain_stream
format_docs
“hello world!, goodbye world!”
on_chain_end
format_docs
[Document(…)]
“hello world!, goodbye world!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[检索器名称]
{“query”: “hello”}
on_retriever_end
[检索器名称]
{“query”: “hello”}
[Document(…), ..]
on_prompt_start
[模板名称]
{“question”: “hello”}
on_prompt_end
[模板名称]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
除了标准事件外,用户还可以调度自定义事件(请参阅下面的示例)。
自定义事件将仅在 API 的 v2 版本中显示!
自定义事件具有以下格式
属性
类型
描述
name
str
事件的用户定义名称。
data
Any
与事件关联的数据。这可以是任何内容,但我们建议使其可JSON序列化。
以下是与上面所示标准事件关联的声明
format_docs:
def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool:
@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
提示:
template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
示例
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
示例:分派自定义事件
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- 参数
input (Any) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。
version (Literal['v1', 'v2']) – 要使用的模式版本,可以是 v2 或 v1。用户应使用 v2。v1 用于向后兼容,将在 0.4.0 版本中弃用。在 API 稳定之前,不会分配默认值。自定义事件将仅在 v2 中显示。
include_names (Optional[Sequence[str]]) – 仅包括来自名称匹配的 runnable 的事件。
include_types (Optional[Sequence[str]]) – 仅包括来自类型匹配的 runnable 的事件。
include_tags (Optional[Sequence[str]]) – 仅包括来自标签匹配的 runnable 的事件。
exclude_names (Optional[Sequence[str]]) – 排除来自名称匹配的 runnable 的事件。
exclude_types (Optional[Sequence[str]]) – 排除来自类型匹配的 runnable 的事件。
exclude_tags (Optional[Sequence[str]]) – 排除来自标签匹配的 runnable 的事件。
kwargs (Any) – 要传递给 Runnable 的其他关键字参数。这些参数将传递给 astream_log,因为此 astream_events 的实现构建于 astream_log 之上。
- Yields
StreamEvents 的异步流。
- 引发
NotImplementedError – 如果版本不是 v1 或 v2。
- 返回类型
AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]
- batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
默认实现使用线程池执行器并行运行 invoke。
批量处理的默认实现非常适用于 IO 绑定的可运行对象。
子类应该覆盖此方法,如果它们可以更有效地进行批量处理;例如,如果底层的 Runnable 使用支持批量模式的 API。
- 参数
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- 返回类型
List[Output]
- batch_as_completed(inputs: Sequence[Input], config">: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) Iterator[Tuple[int, Union[Output, Exception]]] ¶
并行运行 invoke 处理输入列表,并在完成时生成结果。
- 参数
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- 返回类型
Iterator[Tuple[int, Union[Output, Exception]]]
- bind_functions(functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable]], function_call: Optional[str] = None, **kwargs: Any) Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]], BaseMessage] ¶
将函数(和其他对象)绑定到此聊天模型。
- 参数
functions (Sequence[Union[Dict[str, Any], Type[BaseModel], Callable]]) – 要绑定到此聊天模型的函数定义列表。可以是字典、Pydantic 模型或可调用对象。Pydantic 模型和可调用对象将自动转换为其模式字典表示形式。
function_call (Optional[str]) – 要求模型调用的函数。必须是提供的单个函数的名称,或 “auto” 以自动确定要调用的函数(如果有)。
kwargs (Any) – 要传递给
Runnable
构造函数的任何其他参数。
- 返回类型
Runnable[Union[PromptValue, str, Sequence[Union[BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any]]]], BaseMessage]
- bind_tools(tools: Sequence[Union[Dict[str, Any], Type, Callable, BaseTool]], **kwargs: Any) Runnable[LanguageModelInput, BaseMessage] ¶
- 参数
tools (Sequence[Union[Dict[str, Any], Type, Callable, BaseTool]]) –
kwargs (Any) –
- 返回类型
Runnable[LanguageModelInput, BaseMessage]
- call_as_llm(message: str, stop: Optional[List[str]] = None, **kwargs: Any) str ¶
Deprecated since version langchain-core==0.1.7: 使用
invoke
代替。- 参数
message (str) –
stop (Optional[List[str]]) –
kwargs (Any) –
- 返回类型
str
- completion_with_retry(run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any) Any ¶
使用 tenacity 重试完成调用。
- 参数
run_manager (Optional[CallbackManagerForLLMRun]) –
kwargs (Any) –
- 返回类型
Any
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output] ¶
配置可在运行时设置的 Runnable 的备选项。
- 参数
which (ConfigurableField) – 将用于选择备选项的 ConfigurableField 实例。
default_key (str) – 如果未选择备选项,则使用的默认键。默认为 “default”。
prefix_keys (bool) – 是否用 ConfigurableField id 作为键的前缀。默认为 False。
**kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – 键到 Runnable 实例或返回 Runnable 实例的可调用对象的字典。
- 返回值
配置了备选项的新 Runnable。
- 返回类型
RunnableSerializable[Input, Output]
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content )
- configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output] ¶
在运行时配置特定的 Runnable 字段。
- 参数
**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – 要配置的 ConfigurableField 实例的字典。
- 返回值
配置了字段的新 Runnable。
- 返回类型
RunnableSerializable[Input, Output]
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content )
- generate(messages: List[List[BaseMessage]], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, run_id: Optional[UUID] = None, **kwargs: Any) LLMResult ¶
将一系列提示传递给模型并返回模型生成结果。
此方法应利用批量调用来处理公开批量 API 的模型。
- 当您想要以下操作时,请使用此方法:
利用批量调用,
需要从模型获得比仅生成最佳值更多的输出,
- 构建与底层语言模型无关的链
类型(例如,纯文本完成模型与聊天模型)。
- 参数
messages (List[List[BaseMessage]]) – 消息列表的列表。
stop (Optional[List[str]]) – 生成时使用的停止词。模型输出在首次出现任何这些子字符串时被截断。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 要传递的回调。用于在整个生成过程中执行附加功能,例如日志记录或流式传输。
**kwargs (Any) – 任意附加关键字参数。这些通常传递给模型提供商 API 调用。
tags (Optional[List[str]]) –
metadata (Optional[Dict[str, Any]]) –
run_name (Optional[str]) –
run_id (Optional[UUID]) –
**kwargs –
- 返回值
- 一个 LLMResult,其中包含每个输入的候选 Generations 列表
提示和附加的模型提供商特定的输出。
- 返回类型
- generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) LLMResult ¶
将一系列提示传递给模型并返回模型生成结果。
此方法应利用批量调用来处理公开批量 API 的模型。
- 当您想要以下操作时,请使用此方法:
利用批量调用,
需要从模型获得比仅生成最佳值更多的输出,
- 构建与底层语言模型无关的链
类型(例如,纯文本完成模型与聊天模型)。
- 参数
prompts (List[PromptValue]) – PromptValue 列表。PromptValue 是一个可以转换为匹配任何语言模型格式的对象(纯文本生成模型的字符串和聊天模型的 BaseMessages)。
stop (Optional[List[str]]) – 生成时使用的停止词。模型输出在首次出现任何这些子字符串时被截断。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 要传递的回调。用于在整个生成过程中执行附加功能,例如日志记录或流式传输。
**kwargs (Any) – 任意附加关键字参数。这些通常传递给模型提供商 API 调用。
- 返回值
- 一个 LLMResult,其中包含每个输入的候选 Generations 列表
提示和附加的模型提供商特定的输出。
- 返回类型
- get_num_tokens(text: str) int ¶
获取文本中存在的 token 数量。
用于检查输入是否适合模型的上下文窗口。
- 参数
text (str) – 要标记化的字符串输入。
- 返回值
文本中 token 的整数数量。
- 返回类型
int
- get_num_tokens_from_messages(messages: list[langchain_core.messages.base.BaseMessage]) int [source]¶
使用 tiktoken 包计算 token 数量。
官方文档: https://github.com/openai/openai-cookbook/blob/ main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb
- 参数
messages (list[langchain_core.messages.base.BaseMessage]) –
- 返回类型
int
- get_token_ids(text: str) List[int] ¶
使用 tiktoken 包获取文本中存在的 token。
- 参数
text (str) –
- 返回类型
List[int]
- invoke(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) BaseMessage ¶
将单个输入转换为输出。重写以实现。
- 参数
input (LanguageModelInput) – Runnable 的输入。
config (Optional[RunnableConfig]) – 调用 Runnable 时使用的配置。 该配置支持用于追踪目的的标准键,如 ‘tags’、‘metadata’,用于控制并行工作量的 ‘max_concurrency’,以及其他键。 请参阅 RunnableConfig 以了解更多详细信息。
stop (Optional[List[str]]) –
kwargs (Any) –
- 返回值
Runnable 的输出。
- 返回类型
- predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) str ¶
Deprecated since version langchain-core==0.1.7: 使用
invoke
代替。- 参数
text (str) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- 返回类型
str
- predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) BaseMessage ¶
Deprecated since version langchain-core==0.1.7: 使用
invoke
代替。- 参数
messages (List[BaseMessage]) –
stop (Optional[Sequence[str]]) –
kwargs (Any) –
- 返回类型
- stream(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) Iterator[BaseMessageChunk] ¶
流式传输的默认实现,它会调用 invoke。如果子类支持流式输出,则应重写此方法。
- 参数
input (LanguageModelInput) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。
kwargs (Any) – 要传递给 Runnable 的其他关键字参数。
stop (Optional[List[str]]) –
- Yields
Runnable 的输出。
- 返回类型
Iterator[BaseMessageChunk]
- to_json() Union[SerializedConstructor, SerializedNotImplemented] ¶
将 Runnable 序列化为 JSON。
- 返回值
Runnable 的 JSON 可序列化表示形式。
- 返回类型
- with_structured_output(schema: Union[Dict, Type], *, include_raw: bool = False, **kwargs: Any) Runnable[LanguageModelInput, Union[Dict, BaseModel]] ¶
模型包装器,返回格式化为匹配给定模式的输出。
- 参数
schema (Union[Dict, Type]) –
- 输出模式。可以作为以下形式传入
OpenAI 函数/工具模式,
JSON Schema,
TypedDict 类 (0.2.26 版本中添加了支持),
或 Pydantic 类。
如果
schema
是 Pydantic 类,则模型输出将是该类的 Pydantic 实例,并且模型生成的字段将由 Pydantic 类进行验证。 否则,模型输出将是 dict,并且不会进行验证。 有关如何在指定 Pydantic 或 TypedDict 类时正确指定模式字段的类型和描述的更多信息,请参阅langchain_core.utils.function_calling.convert_to_openai_tool()
。Changed in version 0.2.26: 添加了对 TypedDict 类的支持。
include_raw (bool) – 如果为 False,则仅返回解析后的结构化输出。 如果在模型输出解析期间发生错误,则会引发该错误。 如果为 True,则将返回原始模型响应 (BaseMessage) 和解析后的模型响应。 如果在输出解析期间发生错误,它将被捕获并返回。 最终输出始终是一个带有键 “raw”、“parsed” 和 “parsing_error” 的 dict。
kwargs (Any) –
- 返回值
一个 Runnable,它接受与
langchain_core.language_models.chat.BaseChatModel
相同的输入。如果
include_raw
为 False 且schema
是 Pydantic 类,则 Runnable 输出schema
的实例(即,Pydantic 对象)。否则,如果
include_raw
为 False,则 Runnable 输出一个 dict。- 如果
include_raw
为 True,则 Runnable 输出一个带有以下键的 dict "raw"
: BaseMessage"parsed"
: 如果存在解析错误,则为 None,否则类型取决于上面描述的schema
。"parsing_error"
: Optional[BaseException]
- 如果
- 返回类型
- 示例:Pydantic 模式 (include_raw=False)
from langchain_core.pydantic_v1 import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = ChatModel(model="model-name", temperature=0) structured_llm = llm.with_structured_output(AnswerWithJustification) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> AnswerWithJustification( # answer='They weigh the same', # justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.' # )
- 示例:Pydantic 模式 (include_raw=True)
from langchain_core.pydantic_v1 import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = ChatModel(model="model-name", temperature=0) structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> { # 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}), # 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'), # 'parsing_error': None # }
- 示例:Dict 模式 (include_raw=False)
from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils.function_calling import convert_to_openai_tool class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str dict_schema = convert_to_openai_tool(AnswerWithJustification) llm = ChatModel(model="model-name", temperature=0) structured_llm = llm.with_structured_output(dict_schema) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> { # 'answer': 'They weigh the same', # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.' # }