langchain_community.chains.graph_qa.neptune_sparql
.NeptuneSparqlQAChain¶
注意
NeptuneSparqlQAChain 实现了标准的 Runnable 接口
。 🏃
Runnable 接口
在可运行对象上还有其他可用方法,例如 with_types
, with_retry
, assign
, bind
, get_graph
以及更多。
- class langchain_community.chains.graph_qa.neptune_sparql.NeptuneSparqlQAChain[source]¶
基类:
Chain
用于通过生成 SPARQL 语句来回答关于 Neptune 图谱的问题的链。
- 安全注意事项: 确保数据库连接使用的凭据
权限范围应尽可能窄,仅包含必要的权限。否则可能会导致数据损坏或丢失,因为调用代码可能会尝试执行导致数据删除、数据突变(如果提示得当)或读取敏感数据(如果数据库中存在此类数据)的命令。防止此类负面结果的最佳方法是(在适当的情况下)限制授予与此工具一起使用的凭据的权限。
有关更多信息,请参阅 https://python.langchain.ac.cn/docs/security。
示例
- chain = NeptuneSparqlQAChain.from_llm(
llm=llm, graph=graph
) response = chain.invoke(query)
- param callback_manager: Optional[BaseCallbackManager] = None¶
[已弃用] 请改用 callbacks。
- param callbacks: Callbacks = None¶
回调处理程序(或回调管理器)的可选列表。默认为 None。回调处理程序在链调用的整个生命周期中被调用,从 on_chain_start 开始,到 on_chain_end 或 on_chain_error 结束。每个自定义链都可以选择调用额外的回调方法,有关完整详细信息,请参阅回调文档。
- param extra_instructions: Optional[str] = None¶
附加到查询生成提示的额外说明。
- param graph: NeptuneRdfGraph [必需]¶
- param memory: Optional[BaseMemory] = None¶
可选的内存对象。默认为 None。内存是一个类,它在每个链的开始和结束时被调用。在开始时,内存加载变量并在链中传递它们。在结束时,它保存任何返回的变量。有许多不同类型的内存 - 请参阅内存文档以获取完整目录。
- param metadata: Optional[Dict[str, Any]] = None¶
与链关联的可选元数据。默认为 None。此元数据将与对此链的每次调用关联,并作为参数传递给在 callbacks 中处理程序。您可以使用它们来标识链的特定实例及其用例。
- param return_direct: bool = False¶
是否直接返回查询图谱的结果。
- param return_intermediate_steps: bool = False¶
是否返回中间步骤以及最终答案。
- param tags: Optional[List[str]] = None¶
与链关联的可选标签列表。默认为 None。这些标签将与对此链的每次调用关联,并作为参数传递给在 callbacks 中处理程序。您可以使用它们来标识链的特定实例及其用例。
- param top_k: int = 10¶
- param verbose: bool [可选]¶
是否在 verbose 模式下运行。在 verbose 模式下,一些中间日志将打印到控制台。默认为全局 verbose 值,可通过 langchain.globals.get_verbose() 访问。
- __call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) Dict[str, Any] ¶
Deprecated since version langchain==0.1.0: 请使用
invoke
代替。执行链。
- 参数
inputs (Union[Dict[str, Any], Any]) – 输入字典,或者如果链仅期望一个参数,则为单个输入。应包含 Chain.input_keys 中指定的所有输入,但链的内存将设置的输入除外。
return_only_outputs (bool) – 是否仅在响应中返回输出。如果为 True,则仅返回由此链生成的新键。如果为 False,则将返回输入键和由此链生成的新键。默认为 False。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 用于此链运行的回调。除了在构造期间传递给链的回调之外,还将调用这些回调,但只有这些运行时回调将传播到对其他对象的调用。
tags (Optional[List[str]]) – 要传递给所有回调的字符串标签列表。除了在构造期间传递给链的标签之外,还将传递这些标签,但只有这些运行时标签将传播到对其他对象的调用。
metadata (Optional[Dict[str, Any]]) – 与链关联的可选元数据。默认为 None
include_run_info (bool) – 是否在响应中包含运行信息。默认为 False。
run_name (Optional[str]) –
- Returns
- 命名输出的字典。应包含
Chain.output_keys 中指定的所有输出.
- Return type
Dict[str, Any]
- async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
默认实现使用 asyncio.gather 并行运行 ainvoke。
批处理的默认实现对于 IO 绑定可运行对象效果良好。
如果子类可以更有效地进行批处理,则应覆盖此方法;例如,如果底层 Runnable 使用支持批处理模式的 API。
- 参数
inputs (List[Input]) – Runnable 的输入列表。
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – 调用 Runnable 时要使用的配置。该配置支持标准键,如 ‘tags’、‘metadata’(用于跟踪目的)、‘max_concurrency’(用于控制并行执行的工作量)以及其他键。有关更多详细信息,请参阅 RunnableConfig。默认为 None。
return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。
kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。
- Returns
Runnable 的输出列表。
- Return type
List[Output]
- async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]] ¶
在一系列输入上并行运行 ainvoke,并在结果完成时生成结果。
- 参数
inputs (Sequence[Input]) – Runnable 的输入列表。
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – 调用 Runnable 时要使用的配置。该配置支持标准键,如 ‘tags’、‘metadata’(用于跟踪目的)、‘max_concurrency’(用于控制并行执行的工作量)以及其他键。有关更多详细信息,请参阅 RunnableConfig。默认为 None。默认为 None。
return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。
kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。
- Yields
输入索引和来自 Runnable 的输出的元组。
- Return type
AsyncIterator[Tuple[int, Union[Output, Exception]]]
- async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) Dict[str, Any] ¶
Deprecated since version langchain==0.1.0: 请使用
ainvoke
代替。异步执行链。
- 参数
inputs (Union[Dict[str, Any], Any]) – 输入字典,或者如果链仅期望一个参数,则为单个输入。应包含 Chain.input_keys 中指定的所有输入,但链的内存将设置的输入除外。
return_only_outputs (bool) – 是否仅在响应中返回输出。如果为 True,则仅返回由此链生成的新键。如果为 False,则将返回输入键和由此链生成的新键。默认为 False。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 用于此链运行的回调。除了在构造期间传递给链的回调之外,还将调用这些回调,但只有这些运行时回调将传播到对其他对象的调用。
tags (Optional[List[str]]) – 要传递给所有回调的字符串标签列表。除了在构造期间传递给链的标签之外,还将传递这些标签,但只有这些运行时标签将传播到对其他对象的调用。
metadata (Optional[Dict[str, Any]]) – 与链关联的可选元数据。默认为 None
include_run_info (bool) – 是否在响应中包含运行信息。默认为 False。
run_name (Optional[str]) –
- Returns
- 命名输出的字典。应包含
Chain.output_keys 中指定的所有输出.
- Return type
Dict[str, Any]
- async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) Dict[str, Any] ¶
ainvoke 的默认实现,从线程中调用 invoke。
即使 Runnable 没有实现 invoke 的原生异步版本,默认实现也允许使用异步代码。
如果子类可以异步运行,则应该重写此方法。
- 参数
input (Dict[str, Any]) –
config (Optional[RunnableConfig]) –
kwargs (Any) –
- Return type
Dict[str, Any]
- apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) List[Dict[str, str]] ¶
Deprecated since version langchain==0.1.0: 请使用
batch
代替。对列表中的所有输入调用链。
- 参数
input_list (List[Dict[str, Any]]) –
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
- Return type
List[Dict[str, str]]
- async aprep_inputs(inputs: Union[Dict[str, Any], Any]) Dict[str, str] ¶
准备链的输入,包括从内存中添加输入。
- 参数
inputs (Union[Dict[str, Any], Any]) – 原始输入的字典,或者当链只接受一个参数时的单个输入。应包含 Chain.input_keys 中指定的所有输入,除了将由链的内存设置的输入。
- Returns
包含所有输入的字典,包括链的内存添加的输入。
- Return type
Dict[str, str]
- async aprep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) Dict[str, str] ¶
验证和准备链的输出,并将关于此运行的信息保存到内存中。
- 参数
inputs (Dict[str, str]) – 链输入的字典,包括链内存添加的任何输入。
outputs (Dict[str, str]) – 初始链输出的字典。
return_only_outputs (bool) – 是否仅返回链的输出。如果为 False,则输入也会添加到最终输出中。
- Returns
最终链输出的字典。
- Return type
Dict[str, str]
- async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) Any ¶
Deprecated since version langchain==0.1.0: 请使用
ainvoke
代替。执行链的便捷方法。
此方法和 Chain.__call__ 之间的主要区别在于,此方法期望输入直接作为位置参数或关键字参数传入,而 Chain.__call__ 期望单个输入字典包含所有输入。
- 参数
*args (Any) – 如果链只接受单个输入,则可以将其作为唯一的位置参数传入。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 用于此链运行的回调。除了在构造期间传递给链的回调之外,还将调用这些回调,但只有这些运行时回调将传播到对其他对象的调用。
tags (Optional[List[str]]) – 要传递给所有回调的字符串标签列表。除了在构造期间传递给链的标签之外,还将传递这些标签,但只有这些运行时标签将传播到对其他对象的调用。
**kwargs (Any) – 如果链接受多个输入,则可以直接作为关键字参数传入。
metadata (Optional[Dict[str, Any]]) –
**kwargs –
- Returns
链的输出。
- Return type
Any
示例
# Suppose we have a single-input chain that takes a 'question' string: await chain.arun("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..." await chain.arun(question=question, context=context) # -> "The temperature in Boise is..."
- as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool ¶
Beta
此 API 处于 Beta 阶段,未来可能会发生变化。
从 Runnable 创建一个 BaseTool。
as_tool
将从 Runnable 实例化一个带有名称、描述和args_schema
的 BaseTool。 在可能的情况下,模式从runnable.get_input_schema
推断。 或者(例如,如果 Runnable 接受字典作为输入,并且未对特定字典键进行类型化),则可以使用args_schema
直接指定模式。 您还可以传递arg_types
来仅指定必需的参数及其类型。- 参数
args_schema (Optional[Type[BaseModel]]) – 工具的模式。默认为 None。
name (Optional[str]) – 工具的名称。默认为 None。
description (Optional[str]) – 工具的描述。默认为 None。
arg_types (Optional[Dict[str, Type]]) – 参数名称到类型的字典。默认为 None。
- Returns
BaseTool 实例。
- Return type
类型化字典输入
from typing import List from typing_extensions import TypedDict from langchain_core.runnables import RunnableLambda class Args(TypedDict): a: int b: List[int] def f(x: Args) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool() as_tool.invoke({"a": 3, "b": [1, 2]})
dict
输入,通过args_schema
指定模式from typing import Any, Dict, List from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) class FSchema(BaseModel): """Apply a function to an integer and list of integers.""" a: int = Field(..., description="Integer") b: List[int] = Field(..., description="List of ints") runnable = RunnableLambda(f) as_tool = runnable.as_tool(FSchema) as_tool.invoke({"a": 3, "b": [1, 2]})
dict
输入,通过arg_types
指定模式from typing import Any, Dict, List from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]}) as_tool.invoke({"a": 3, "b": [1, 2]})
字符串输入
from langchain_core.runnables import RunnableLambda def f(x: str) -> str: return x + "a" def g(x: str) -> str: return x + "z" runnable = RunnableLambda(f) | g as_tool = runnable.as_tool() as_tool.invoke("b")
0.2.14 版本新增功能。
- async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output] ¶
astream 的默认实现,它调用 ainvoke。如果子类支持流式输出,则应该重写此方法。
- 参数
input (Input) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。
kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。
- Yields
Runnable 的输出。
- Return type
AsyncIterator[Output]
- astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]] ¶
Beta
此 API 处于 Beta 阶段,未来可能会发生变化。
生成事件流。
用于创建一个 StreamEvents 的迭代器,该迭代器提供关于 Runnable 进度的实时信息,包括来自中间结果的 StreamEvents。
StreamEvent 是一个具有以下模式的字典
event
: str - 事件名称的格式为:格式:on_[runnable_type]_(start|stream|end)。
name
: str - 生成事件的 Runnable 的名称。run_id
: str - 随机生成的 ID,与给定 Runnable 执行的Runnable 相关联,该 Runnable 发出事件。 作为父 Runnable 执行一部分调用的子 Runnable 将被分配其自己的唯一 ID。
parent_ids
: List[str] - 生成事件的父 runnable 的 ID。根 Runnable 将具有一个空列表。 父 ID 的顺序是从根到直接父级。 仅适用于 API 的 v2 版本。 API 的 v1 版本将返回一个空列表。
tags
: Optional[List[str]] - 生成事件的 Runnable 的标签。
metadata
: Optional[Dict[str, Any]] - 生成事件的 Runnable 的元数据。
data
: Dict[str, Any]
下面是一个表格,说明了各种链可能发出的一些事件。 为了简洁起见,元数据字段已从表中省略。 链定义已包含在表格之后。
注意 此参考表适用于模式的 V2 版本。
event
name
chunk
input
output
on_chat_model_start
[模型名称]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[模型名称]
AIMessageChunk(content=”hello”)
on_chat_model_end
[模型名称]
{“messages”: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=”hello world”)
on_llm_start
[模型名称]
{‘input’: ‘hello’}
on_llm_stream
[模型名称]
‘Hello’
on_llm_end
[模型名称]
‘Hello human!’
on_chain_start
format_docs
on_chain_stream
format_docs
“hello world!, goodbye world!”
on_chain_end
format_docs
[Document(…)]
“hello world!, goodbye world!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[检索器名称]
{“query”: “hello”}
on_retriever_end
[检索器名称]
{“query”: “hello”}
[Document(…), ..]
on_prompt_start
[模板名称]
{“question”: “hello”}
on_prompt_end
[模板名称]
{“question”: “hello”}
ChatPromptValue(messages: [SystemMessage, …])
除了标准事件之外,用户还可以调度自定义事件(请参见下面的示例)。
自定义事件将仅在 API 的 v2 版本中显示!
自定义事件具有以下格式
属性
类型
描述
name
str
用户定义的事件名称。
data
Any
与事件关联的数据。 这可以是任何内容,但我们建议使其可 JSON 序列化。
以下是与上面显示的标准事件关联的声明
format_docs:
def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool:
@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
prompt:
template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
示例
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
示例:调度自定义事件
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- 参数
input (Any) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。
version (Literal['v1', 'v2']) – 要使用的模式版本,可以是 v2 或 v1。 用户应使用 v2。v1 用于向后兼容,将在 0.4.0 中弃用。 在 API 稳定之前,不会分配默认值。 自定义事件将仅在 v2 中显示。
include_names (Optional[Sequence[str]]) – 仅包含来自具有匹配名称的 runnable 的事件。
include_types (Optional[Sequence[str]]) – 仅包含来自具有匹配类型的 runnable 的事件。
include_tags (Optional[Sequence[str]]) – 仅包含来自具有匹配标签的 runnable 的事件。
exclude_names (Optional[Sequence[str]]) – 排除来自具有匹配名称的 runnable 的事件。
exclude_types (Optional[Sequence[str]]) – 排除来自具有匹配类型的 runnable 的事件。
exclude_tags (Optional[Sequence[str]]) – 排除来自具有匹配标签的 runnable 的事件。
kwargs (Any) – 要传递给 Runnable 的其他关键字参数。 这些将传递给 astream_log,因为 astream_events 的此实现构建在 astream_log 之上。
- Yields
StreamEvents 的异步流。
- Raises
NotImplementedError – 如果版本不是 v1 或 v2。
- Return type
AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]
- batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
默认实现使用线程池执行器并行运行 invoke。
批处理的默认实现对于 IO 绑定可运行对象效果良好。
如果子类可以更有效地进行批处理,则应覆盖此方法;例如,如果底层 Runnable 使用支持批处理模式的 API。
- 参数
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- Return type
List[Output]
- batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs:< /span> Optional[Any]) Iterator[Tuple[int, Union[Output, Exception]]] ¶
对输入列表并行运行 invoke,并在结果完成时生成结果。
- 参数
inputs (Sequence[Input]) –
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (Optional[Any]) –
- Return type
Iterator[Tuple[int, Union[Output, Exception]]]
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs:< /span> Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output] ¶
配置可在运行时设置的 Runnable 的备选项。
- 参数
which (ConfigurableField) – 将用于选择备选项的 ConfigurableField 实例。
default_key (str) – 如果未选择备选项,则使用的默认键。默认为“default”。
prefix_keys (bool) – 是否为键添加 ConfigurableField id 前缀。默认为 False。
**kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – 键到 Runnable 实例或返回 Runnable 实例的可调用对象的字典。
- Returns
配置了备选项的新 Runnable。
- Return type
RunnableSerializable[Input, Output]
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content )
- configurable_fields(**kwargs:< /span> Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output] ¶
在运行时配置特定的 Runnable 字段。
- 参数
**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – 要配置的 ConfigurableField 实例的字典。
- Returns
配置了字段的新 Runnable。
- Return type
RunnableSerializable[Input, Output]
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content )
- classmethod from_llm(llm: BaseLanguageModel, *, qa_prompt: BasePromptTemplate = PromptTemplate(input_variables=['context', 'prompt'], template="Task: Generate a natural language response from the results of a SPARQL query.\nYou are an assistant that creates well-written and human understandable answers.\nThe information part contains the information provided, which you can use to construct an answer.\nThe information provided is authoritative, you must never doubt it or try to use your internal knowledge to correct it.\nMake your response sound like the information is coming from an AI assistant, but don't add any information.\nInformation:\n{context}\n\nQuestion: {prompt}\nHelpful Answer:"), sparql_prompt: BasePromptTemplate = PromptTemplate(input_variables=['prompt', 'schema'], template='\nTask: Generate a SPARQL SELECT statement for querying a graph database.\nFor instance, to find all email addresses of John Doe, the following \nquery in backticks would be suitable:\n```\nPREFIX foaf: <http://xmlns.com/foaf/0.1/>\nSELECT ?email\nWHERE {{\n ?person foaf:name "John Doe" .\n ?person foaf:mbox ?email .\n}}\n```\nInstructions:\nUse only the node types and properties provided in the schema.\nDo not use any node types and properties that are not explicitly provided.\nInclude all necessary prefixes.\n\nExamples:\n\nSchema:\n{schema}\nNote: Be as concise as possible.\nDo not include any explanations or apologies in your responses.\nDo not respond to any questions that ask for anything else than \nfor you to construct a SPARQL query.\nDo not include any text except the SPARQL query generated.\n\nThe question is:\n{prompt}'), examples: Optional[str] = None, **kwargs:< /span> Any) NeptuneSparqlQAChain [source]¶
从 LLM 初始化。
- 参数
llm (BaseLanguageModel) –
qa_prompt (BasePromptTemplate) –
sparql_prompt (BasePromptTemplate) –
examples (Optional[str]) –
kwargs (Any) –
- Return type
- invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs:< /span> Any) Dict[str, Any] ¶
将单个输入转换为输出。覆盖以实现。
- 参数
input (Dict[str, Any]) – Runnable 的输入。
config (Optional[RunnableConfig]) – 调用 Runnable 时使用的配置。该配置支持标准键,如用于跟踪目的的“tags”、“metadata”,用于控制并行执行多少工作的“max_concurrency”以及其他键。有关更多详细信息,请参阅 RunnableConfig。
kwargs (Any) –
- Returns
Runnable 的输出。
- Return type
Dict[str, Any]
- prep_inputs(inputs: Union[Dict[str, Any], Any]) Dict[str, str] ¶
准备链的输入,包括从内存中添加输入。
- 参数
inputs (Union[Dict[str, Any], Any]) – 原始输入的字典,或者当链只接受一个参数时的单个输入。应包含 Chain.input_keys 中指定的所有输入,除了将由链的内存设置的输入。
- Returns
包含所有输入的字典,包括链的内存添加的输入。
- Return type
Dict[str, str]
- prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) Dict[str, str] ¶
验证和准备链的输出,并将关于此运行的信息保存到内存中。
- 参数
inputs (Dict[str, str]) – 链输入的字典,包括链内存添加的任何输入。
outputs (Dict[str, str]) – 初始链输出的字典。
return_only_outputs (bool) – 是否仅返回链的输出。如果为 False,则输入也会添加到最终输出中。
- Returns
最终链输出的字典。
- Return type
Dict[str, str]
- run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs:< /span> Any) Any ¶
Deprecated since version langchain==0.1.0: 请使用
invoke
代替。执行链的便捷方法。
此方法和 Chain.__call__ 之间的主要区别在于,此方法期望输入直接作为位置参数或关键字参数传入,而 Chain.__call__ 期望单个输入字典包含所有输入。
- 参数
*args (Any) – 如果链只接受单个输入,则可以将其作为唯一的位置参数传入。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 用于此链运行的回调。除了在构造期间传递给链的回调之外,还将调用这些回调,但只有这些运行时回调将传播到对其他对象的调用。
tags (Optional[List[str]]) – 要传递给所有回调的字符串标签列表。除了在构造期间传递给链的标签之外,还将传递这些标签,但只有这些运行时标签将传播到对其他对象的调用。
**kwargs (Any) – 如果链接受多个输入,则可以直接作为关键字参数传入。
metadata (Optional[Dict[str, Any]]) –
**kwargs –
- Returns
链的输出。
- Return type
Any
示例
# Suppose we have a single-input chain that takes a 'question' string: chain.run("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..." chain.run(question=question, context=context) # -> "The temperature in Boise is..."
- save(file_path: Union[Path, str]) None ¶
保存链。
- 期望实现 Chain._chain_type 属性且内存为
空。
- 参数
file_path (Union[Path, str]) – 用于保存链的文件路径。
- Return type
None
示例
chain.save(file_path="path/chain.yaml")
- stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs:< /span> Optional[Any]) Iterator[Output] ¶
流式传输的默认实现,它调用 invoke。如果子类支持流式输出,则应覆盖此方法。
- 参数
input (Input) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。
kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。
- Yields
Runnable 的输出。
- Return type
Iterator[Output]
- to_json() Union[SerializedConstructor, SerializedNotImplemented] ¶
将 Runnable 序列化为 JSON。
- Returns
Runnable 的 JSON 可序列化表示形式。
- Return type
- property input_keys: List[str]¶
链输入中应包含的键。
- property output_keys: List[str]¶
链输出中应包含的键。