langchain.chains.combine_documents.map_rerank
.MapRerankDocumentsChain¶
注意
MapRerankDocumentsChain 实现了标准的 Runnable 接口
。 🏃
Runnable 接口
具有在 runnables 上可用的其他方法,例如 with_types
、 with_retry
、 assign
、 bind
、 get_graph
等等。
- class langchain.chains.combine_documents.map_rerank.MapRerankDocumentsChain[source]¶
-
通过将链映射到文档上,然后重新排序结果来组合文档。
此算法对每个输入文档调用一个 LLMChain。LLMChain 应该有一个 OutputParser,将结果解析为答案 (answer_key) 和分数 (rank_key)。然后返回得分最高的答案。
- 示例
from langchain.chains import StuffDocumentsChain, LLMChain from langchain_core.prompts import PromptTemplate from langchain_community.llms import OpenAI from langchain.output_parsers.regex import RegexParser document_variable_name = "context" llm = OpenAI() # The prompt here should take as an input variable the # `document_variable_name` # The actual prompt will need to be a lot more complex, this is just # an example. prompt_template = ( "Use the following context to tell me the chemical formula " "for water. Output both your answer and a score of how confident " "you are. Context: {content}" ) output_parser = RegexParser( regex=r"(.*?)
- Score: (.*)”,
output_keys=[“answer”, “score”],
) prompt = PromptTemplate(
template=prompt_template, input_variables=[“context”], output_parser=output_parser,
) llm_chain = LLMChain(llm=llm, prompt=prompt) chain = MapRerankDocumentsChain(
llm_chain=llm_chain, document_variable_name=document_variable_name, rank_key=”score”, answer_key=”answer”,
)
- param answer_key: str [Required]¶
llm_chain 输出中作为答案返回的键。
- param callback_manager: Optional[BaseCallbackManager] = None¶
[已弃用] 请使用 callbacks 代替。
- param callbacks: Callbacks = None¶
可选的回调处理程序列表(或回调管理器)。默认为 None。回调处理程序在调用链的整个生命周期中被调用,从 on_chain_start 开始,到 on_chain_end 或 on_chain_error 结束。每个自定义链可以选择性地调用额外的回调方法,请参阅回调文档以获取完整详细信息。
- param document_variable_name: str [Required]¶
llm_chain 中用于放置文档的变量名。如果 llm_chain 中只有一个变量,则无需提供此项。
- param memory: Optional[BaseMemory] = None¶
可选的 memory 对象。默认为 None。Memory 是一个在每个链的开始和结束时都会被调用的类。在开始时,memory 加载变量并将它们传递到链中。在结束时,它保存任何返回的变量。有许多不同类型的 memory - 请参阅 memory 文档以获取完整目录。
- param metadata: Optional[Dict[str, Any]] = None¶
与链关联的可选元数据。默认为 None。此元数据将与对此链的每次调用关联,并作为参数传递给 callbacks 中定义的处理程序。您可以使用这些来例如识别链的特定实例及其用例。
- param metadata_keys: Optional[List[str]] = None¶
从选定文档返回的额外元数据。
- param rank_key: str [Required]¶
llm_chain 输出中用于排序的键。
- param return_intermediate_steps: bool = False¶
返回中间步骤。中间步骤包括在每个文档上调用 llm_chain 的结果。
- param tags: Optional[List[str]] = None¶
与链关联的可选标签列表。默认为 None。这些标签将与对此链的每次调用关联,并作为参数传递给 callbacks 中定义的处理程序。您可以使用这些来例如识别链的特定实例及其用例。
- param verbose: bool [Optional]¶
是否在 verbose 模式下运行。在 verbose 模式下,一些中间日志将被打印到控制台。默认为全局 verbose 值,可通过 langchain.globals.get_verbose() 访问。
- __call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) Dict[str, Any] ¶
Deprecated since version langchain==0.1.0: 请使用
invoke
代替。(自 langchain==0.1.0 版本起已弃用)执行链。
- 参数
inputs (Union[Dict[str, Any], Any]) – 输入字典,或者如果链只期望一个参数,则为单个输入。应包含 Chain.input_keys 中指定的所有输入,但链的 memory 将设置的输入除外。
return_only_outputs (bool) – 是否仅在响应中返回输出。如果为 True,则仅返回由此链生成的新键。如果为 False,则将返回输入键和由此链生成的新键。默认为 False。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 用于此链运行的回调。这些回调除了在构建期间传递给链的回调之外,还会被调用,但只有这些运行时回调会传播到对其他对象的调用。
tags (Optional[List[str]]) – 要传递给所有回调的字符串标签列表。这些标签除了在构建期间传递给链的标签之外,还会被传递,但只有这些运行时标签会传播到对其他对象的调用。
metadata (Optional[Dict[str, Any]]) – 与链关联的可选元数据。默认为 None
include_run_info (bool) – 是否在响应中包含运行信息。默认为 False。
run_name (Optional[str]) –
- 返回
- 命名输出的字典。应包含所有在
Chain.output_keys 中指定的输出.
- 返回类型
Dict[str, Any]
- async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
默认实现使用 asyncio.gather 并行运行 ainvoke。
batch 的默认实现适用于 IO 密集型 runnables。
如果子类可以更有效地进行批量处理,则应重写此方法;例如,如果底层的 Runnable 使用支持批量模式的 API。
- 参数
inputs (List[Input]) – Runnable 的输入列表。
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – 调用 Runnable 时使用的配置。该配置支持标准键,如用于跟踪目的的 ‘tags’、‘metadata’,用于控制并行执行多少工作的 ‘max_concurrency’,以及其他键。有关更多详细信息,请参阅 RunnableConfig。默认为 None。
return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。
kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。
- 返回
来自 Runnable 的输出列表。
- 返回类型
List[Output]
- async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]] ¶
在一系列输入上并行运行 ainvoke,并在结果完成时产生结果。
- 参数
inputs (Sequence[Input]) – Runnable 的输入列表。
config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – 调用 Runnable 时使用的配置。该配置支持标准键,如用于跟踪目的的 ‘tags’、‘metadata’,用于控制并行执行多少工作的 ‘max_concurrency’,以及其他键。有关更多详细信息,请参阅 RunnableConfig。默认为 None。默认为 None。
return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。
kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。
- 产生
输入索引和 Runnable 输出的元组。
- 返回类型
AsyncIterator[Tuple[int, Union[Output, Exception]]]
- async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) Dict[str, Any] ¶
Deprecated since version langchain==0.1.0: 请使用
ainvoke
代替。(自 langchain==0.1.0 版本起已弃用)异步执行链。
- 参数
inputs (Union[Dict[str, Any], Any]) – 输入字典,或者如果链只期望一个参数,则为单个输入。应包含 Chain.input_keys 中指定的所有输入,但链的 memory 将设置的输入除外。
return_only_outputs (bool) – 是否仅在响应中返回输出。如果为 True,则仅返回由此链生成的新键。如果为 False,则将返回输入键和由此链生成的新键。默认为 False。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 用于此链运行的回调。这些回调除了在构建期间传递给链的回调之外,还会被调用,但只有这些运行时回调会传播到对其他对象的调用。
tags (Optional[List[str]]) – 要传递给所有回调的字符串标签列表。这些标签除了在构建期间传递给链的标签之外,还会被传递,但只有这些运行时标签会传播到对其他对象的调用。
metadata (Optional[Dict[str, Any]]) – 与链关联的可选元数据。默认为 None
include_run_info (bool) – 是否在响应中包含运行信息。默认为 False。
run_name (Optional[str]) –
- 返回
- 命名输出的字典。应包含所有在
Chain.output_keys 中指定的输出.
- 返回类型
Dict[str, Any]
- async acombine_docs(docs: List[Document], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) Tuple[str, dict] [source]¶
以 map rerank 方式组合文档。
通过首先将链映射到所有文档上,然后重新排序结果来进行组合。
- 参数
docs (List[Document]) – 要组合的文档列表
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 要传递的回调
**kwargs (Any) – 要传递给 LLM 调用的其他参数(例如文档之外的其他输入变量)
- 返回
返回的第一个元素是单个字符串输出。返回的第二个元素是要返回的其他键的字典。
- 返回类型
Tuple[str, dict]
- async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) Dict[str, Any] ¶
ainvoke 的默认实现,从线程中调用 invoke。
默认实现允许使用异步代码,即使 Runnable 没有实现 invoke 的原生异步版本。
如果子类可以异步运行,则应覆盖此方法。
- 参数
input (Dict[str, Any]) –
config (Optional[RunnableConfig]) –
kwargs (Any) –
- 返回类型
Dict[str, Any]
- apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) List[Dict[str, str]] ¶
Deprecated since version langchain==0.1.0: 请使用
batch
代替。对列表中的所有输入调用链。
- 参数
input_list (List[Dict[str, Any]]) –
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) –
- 返回类型
List[Dict[str, str]]
- async aprep_inputs(inputs: Union[Dict[str, Any], Any]) Dict[str, str] ¶
准备链的输入,包括从内存中添加输入。
- 参数
inputs (Union[Dict[str, Any], Any]) – 原始输入的字典,或者单个输入(如果链只接受一个参数)。应包含 Chain.input_keys 中指定的所有输入,但链内存将设置的输入除外。
- 返回
包含所有输入的字典,包括链内存添加的输入。
- 返回类型
Dict[str, str]
- async aprep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) Dict[str, str] ¶
验证和准备链的输出,并将有关此运行的信息保存到内存中。
- 参数
inputs (Dict[str, str]) – 链输入的字典,包括链内存添加的任何输入。
outputs (Dict[str, str]) – 初始链输出的字典。
return_only_outputs (bool) – 是否仅返回链输出。如果为 False,则输入也会添加到最终输出中。
- 返回
最终链输出的字典。
- 返回类型
Dict[str, str]
- async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) Any ¶
Deprecated since version langchain==0.1.0: 请使用
ainvoke
代替。(自 langchain==0.1.0 版本起已弃用)执行链的便捷方法。
此方法与 Chain.__call__ 之间的主要区别在于,此方法期望将输入直接作为位置参数或关键字参数传入,而 Chain.__call__ 期望单个输入字典包含所有输入
- 参数
*args (Any) – 如果链只接受单个输入,则可以将其作为唯一的位置参数传入。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 用于此链运行的回调。这些回调除了在构建期间传递给链的回调之外,还会被调用,但只有这些运行时回调会传播到对其他对象的调用。
tags (Optional[List[str]]) – 要传递给所有回调的字符串标签列表。这些标签除了在构建期间传递给链的标签之外,还会被传递,但只有这些运行时标签会传播到对其他对象的调用。
**kwargs (Any) – 如果链接受多个输入,则可以直接作为关键字参数传入。
metadata (Optional[Dict[str, Any]]) –
**kwargs –
- 返回
链的输出。
- 返回类型
Any
示例
# Suppose we have a single-input chain that takes a 'question' string: await chain.arun("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..." await chain.arun(question=question, context=context) # -> "The temperature in Boise is..."
- as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool ¶
Beta
此 API 处于 Beta 阶段,未来可能会发生变化。
从 Runnable 创建 BaseTool。
as_tool
将从 Runnable 实例化一个具有名称、描述和args_schema
的 BaseTool。在可能的情况下,架构会从runnable.get_input_schema
推断。或者(例如,如果 Runnable 接受字典作为输入,并且未键入特定的字典键),可以使用args_schema
直接指定架构。您还可以传递arg_types
以仅指定必需的参数及其类型。- 参数
args_schema (Optional[Type[BaseModel]]) – 工具的架构。默认为 None。
name (Optional[str]) – 工具的名称。默认为 None。
description (Optional[str]) – 工具的描述。默认为 None。
arg_types (Optional[Dict[str, Type]]) – 参数名称到类型的字典。默认为 None。
- 返回
BaseTool 实例。
- 返回类型
类型化字典输入
from typing import List from typing_extensions import TypedDict from langchain_core.runnables import RunnableLambda class Args(TypedDict): a: int b: List[int] def f(x: Args) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool() as_tool.invoke({"a": 3, "b": [1, 2]})
dict
输入,通过args_schema
指定架构from typing import Any, Dict, List from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) class FSchema(BaseModel): """Apply a function to an integer and list of integers.""" a: int = Field(..., description="Integer") b: List[int] = Field(..., description="List of ints") runnable = RunnableLambda(f) as_tool = runnable.as_tool(FSchema) as_tool.invoke({"a": 3, "b": [1, 2]})
dict
输入,通过arg_types
指定架构from typing import Any, Dict, List from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) runnable = RunnableLambda(f) as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]}) as_tool.invoke({"a": 3, "b": [1, 2]})
字符串输入
from langchain_core.runnables import RunnableLambda def f(x: str) -> str: return x + "a" def g(x: str) -> str: return x + "z" runnable = RunnableLambda(f) | g as_tool = runnable.as_tool() as_tool.invoke("b")
0.2.14 版本新增。
- async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output] ¶
astream 的默认实现,它调用 ainvoke。如果子类支持流式输出,则应覆盖此方法。
- 参数
input (Input) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。
kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。
- 产生
Runnable 的输出。
- 返回类型
AsyncIterator[Output]
- astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]] ¶
Beta
此 API 处于 Beta 阶段,未来可能会发生变化。
生成事件流。
用于创建一个 StreamEvents 的迭代器,该迭代器提供有关 Runnable 进度的实时信息,包括来自中间结果的 StreamEvents。
StreamEvent 是一个具有以下架构的字典
event
: str - 事件名称的格式为:on_[runnable_type]_(start|stream|end)。
name
: str - 生成事件的 Runnable 的名称。run_id
: str - 随机生成的 ID,与发出事件的 Runnable 的给定执行相关联。作为父 Runnable 执行一部分调用的子 Runnable 将被分配其自己的唯一 ID。Runnable 的给定执行相关联。作为父 Runnable 执行一部分调用的子 Runnable 将被分配其自己的唯一 ID。
parent_ids
: List[str] - 生成事件的父 runnable 的 ID。根 Runnable 将有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.
tags
: Optional[List[str]] - 生成事件的 Runnable 的标签。the event.
metadata
: Optional[Dict[str, Any]] - 生成事件的 Runnable 的元数据。that generated the event.
data
: Dict[str, Any]
下面是一个表格,说明了各种链可能发出的一些事件。为了简洁起见,表中省略了元数据字段。链定义包含在表格之后。
注意 此参考表适用于架构的 V2 版本。
事件
名称
块
输入
输出
on_chat_model_start
[模型名称]
{“messages”: [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[模型名称]
AIMessageChunk(content=”你好”)
on_chat_model_end
[模型名称]
{“messages”: [[SystemMessage, HumanMessage]]}
AIMessageChunk(content=”你好 世界”)
on_llm_start
[模型名称]
{‘input’: ‘你好’}
on_llm_stream
[模型名称]
‘你好’
on_llm_end
[模型名称]
‘你好,人类!’
on_chain_start
format_docs
on_chain_stream
format_docs
“你好 世界!, 再见 世界!”
on_chain_end
format_docs
[Document(…)]
“你好 世界!, 再见 世界!”
on_tool_start
some_tool
{“x”: 1, “y”: “2”}
on_tool_end
some_tool
{“x”: 1, “y”: “2”}
on_retriever_start
[检索器名称]
{“query”: “你好”}
on_retriever_end
[检索器名称]
{“query”: “你好”}
[Document(…), ..]
on_prompt_start
[模板名称]
{“question”: “你好”}
on_prompt_end
[模板名称]
{“question”: “你好”}
ChatPromptValue(messages: [SystemMessage, …])
除了标准事件之外,用户还可以调度自定义事件(请参阅下面的示例)。
自定义事件将仅在 API 的 v2 版本中显示!
自定义事件具有以下格式
属性
类型
描述
名称
str
用户定义的事件名称。
data
Any
与事件关联的数据。这可以是任何内容,但我们建议使其可 JSON 序列化。
以下是与上面显示的标准事件关联的声明
format_docs:
def format_docs(docs: List[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool:
@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
prompt:
template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
示例
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
示例:调度自定义事件
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- 参数
input (Any) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。
version (Literal['v1', 'v2']) – 要使用的架构版本,v2 或 v1。用户应使用 v2。v1 用于向后兼容,将在 0.4.0 中弃用。在 API 稳定之前,不会分配默认值。自定义事件将仅在 v2 中显示。
include_names (Optional[Sequence[str]]) – 仅包含来自具有匹配名称的 runnable 的事件。
include_types (Optional[Sequence[str]]) – 仅包含来自具有匹配类型的 runnable 的事件。
include_tags (Optional[Sequence[str]]) – 仅包含来自具有匹配标签的 runnable 的事件。
exclude_names (Optional[Sequence[str]]) – 排除来自具有匹配名称的 runnable 的事件。
exclude_types (Optional[Sequence[str]]) – 排除来自具有匹配类型的 runnable 的事件。
exclude_tags (Optional[Sequence[str]]) – 排除来自具有匹配标签的 runnable 的事件。
kwargs (Any) – 要传递给 Runnable 的其他关键字参数。这些参数将传递给 astream_log,因为 astream_events 的此实现构建在 astream_log 之上。
- 产生
StreamEvents 的异步流。
- Raises
NotImplementedError – 如果版本不是 v1 或 v2,则引发此错误。
- 返回类型
AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]
- batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output] ¶
默认实现使用线程池执行器并行运行 invoke。
batch 的默认实现适用于 IO 密集型 runnables。
如果子类可以更有效地进行批量处理,则应重写此方法;例如,如果底层的 Runnable 使用支持批量模式的 API。
- 参数
inputs (List[Input]) –
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (可选的[任意类型]) –
- 返回类型
List[Output]
- batch_as_completed(inputs: Sequence[Input], config: 可选的[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: 可选的[任意类型]) Iterator[Tuple[int, Union[Output, Exception]]] ¶
在输入列表上并行运行 invoke,并在完成时产生结果。
- 参数
inputs (Sequence[Input]) –
config (可选的[Union[RunnableConfig, Sequence[RunnableConfig]]]) –
return_exceptions (bool) –
kwargs (可选的[任意类型]) –
- 返回类型
Iterator[Tuple[int, Union[Output, Exception]]]
- combine_docs(docs: List[Document], callbacks: 可选的[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) Tuple[str, dict] [source]¶
以 map rerank 方式组合文档。
通过首先将链映射到所有文档上,然后重新排序结果来进行组合。
- 参数
docs (List[Document]) – 要组合的文档列表
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 要传递的回调
**kwargs (Any) – 要传递给 LLM 调用的其他参数(例如文档之外的其他输入变量)
- 返回
返回的第一个元素是单个字符串输出。返回的第二个元素是要返回的其他键的字典。
- 返回类型
Tuple[str, dict]
- configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output] ¶
配置可在运行时设置的 Runnables 的备选项。
- 参数
which (ConfigurableField) – 将用于选择备选项的 ConfigurableField 实例。
default_key (str) – 如果未选择备选项,则使用的默认键。默认为 “default”。
prefix_keys (bool) – 是否用 ConfigurableField id 作为键的前缀。默认为 False。
**kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – 键到 Runnable 实例或返回 Runnable 实例的可调用对象的字典。
- 返回
配置了备选项的新 Runnable。
- 返回类型
RunnableSerializable[Input, Output]
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-sonnet-20240229" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content )
- configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output] ¶
在运行时配置特定的 Runnable 字段。
- 参数
**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – 要配置的 ConfigurableField 实例的字典。
- 返回
配置了字段的新 Runnable。
- 返回类型
RunnableSerializable[Input, Output]
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content )
- invoke(input: Dict[str, Any], config: 可选的[RunnableConfig] = None, **kwargs: Any) Dict[str, Any] ¶
将单个输入转换为输出。重写以实现。
- 参数
input (Dict[str, Any]) – Runnable 的输入。
config (可选的[RunnableConfig]) – 调用 Runnable 时使用的配置。该配置支持诸如 ‘tags’、‘metadata’(用于跟踪目的)、‘max_concurrency’(用于控制并行执行多少工作)以及其他键等标准键。请参阅 RunnableConfig 以了解更多详细信息。
kwargs (Any) –
- 返回
Runnable 的输出。
- 返回类型
Dict[str, Any]
- prep_inputs(inputs: Union[Dict[str, Any], Any]) Dict[str, str] ¶
准备链的输入,包括从内存中添加输入。
- 参数
inputs (Union[Dict[str, Any], Any]) – 原始输入的字典,或者单个输入(如果链只接受一个参数)。应包含 Chain.input_keys 中指定的所有输入,但链内存将设置的输入除外。
- 返回
包含所有输入的字典,包括链内存添加的输入。
- 返回类型
Dict[str, str]
- prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) Dict[str, str] ¶
验证和准备链的输出,并将有关此运行的信息保存到内存中。
- 参数
inputs (Dict[str, str]) – 链输入的字典,包括链内存添加的任何输入。
outputs (Dict[str, str]) – 初始链输出的字典。
return_only_outputs (bool) – 是否仅返回链输出。如果为 False,则输入也会添加到最终输出中。
- 返回
最终链输出的字典。
- 返回类型
Dict[str, str]
- prompt_length(docs: List[Document], **kwargs: Any) Optional[int] ¶
返回给定传入文档的 prompt 长度。
调用者可以使用此方法来确定传入文档列表是否会超过某个 prompt 长度。这在尝试确保 prompt 大小保持在某个上下文限制以下时非常有用。
- 参数
docs (List[Document]) – Document 列表,用于计算总 prompt 长度的文档列表。
kwargs (Any) –
- 返回
如果该方法不依赖于 prompt 长度,则返回 None;否则返回 prompt 的标记长度。
- 返回类型
Optional[int]
- run(*args: Any, callbacks: 可选的[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: 可选的[List[str]] = None, metadata: 可选的[Dict[str, Any]] = None, **kwargs: Any) Any ¶
Deprecated since version langchain==0.1.0: 请使用
invoke
代替。(自 langchain==0.1.0 版本起已弃用)执行链的便捷方法。
此方法与 Chain.__call__ 之间的主要区别在于,此方法期望将输入直接作为位置参数或关键字参数传入,而 Chain.__call__ 期望单个输入字典包含所有输入
- 参数
*args (Any) – 如果链只接受单个输入,则可以将其作为唯一的位置参数传入。
callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 用于此链运行的回调。这些回调除了在构建期间传递给链的回调之外,还会被调用,但只有这些运行时回调会传播到对其他对象的调用。
tags (Optional[List[str]]) – 要传递给所有回调的字符串标签列表。这些标签除了在构建期间传递给链的标签之外,还会被传递,但只有这些运行时标签会传播到对其他对象的调用。
**kwargs (Any) – 如果链接受多个输入,则可以直接作为关键字参数传入。
metadata (Optional[Dict[str, Any]]) –
**kwargs –
- 返回
链的输出。
- 返回类型
Any
示例
# Suppose we have a single-input chain that takes a 'question' string: chain.run("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..." chain.run(question=question, context=context) # -> "The temperature in Boise is..."
- save(file_path: Union[Path, str]) None ¶
保存链。
- 期望实现 Chain._chain_type 属性,并且内存为空。
null.
- 参数
file_path (Union[Path, str]) – 用于保存链的文件路径。
- 返回类型
None
示例
chain.save(file_path="path/chain.yaml")
- stream(input: Input, config: 可选的[RunnableConfig] = None, **kwargs: 可选的[Any]) Iterator[Output] ¶
stream 的默认实现,它调用 invoke。如果子类支持流式输出,则应重写此方法。
- 参数
input (Input) – Runnable 的输入。
config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。
kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。
- 产生
Runnable 的输出。
- 返回类型
Iterator[Output]
- to_json() Union[SerializedConstructor, SerializedNotImplemented] ¶
将 Runnable 序列化为 JSON。
- 返回
Runnable 的 JSON 可序列化表示。
- 返回类型