langchain.chains.api.base.APIChain

注意

APIChain 实现了标准的 Runnable 接口。 🏃

Runnable 接口 具有在可运行对象上可用的其他方法,例如 with_typeswith_retryassignbindget_graph 等。

class langchain.chains.api.base.APIChain[source]

基类: Chain

该 Chain 调用 API 并总结响应以回答问题。

安全提示:此 API 链使用 requests 工具包

向 API 发出 GET、POST、PATCH、PUT 和 DELETE 请求。

请谨慎决定允许谁使用此 chain。如果向最终用户公开,请考虑用户将能够代表托管代码的服务器发出任意请求。例如,用户可以要求服务器向只有服务器可以访问的私有 API 发出请求。

控制谁可以使用此工具包提交问题请求以及它具有哪些网络访问权限。

有关更多信息,请参阅 https://python.langchain.ac.cn/docs/security

param api_answer_chain: LLMChain [必需]
param api_docs: str [必需]
param api_request_chain: LLMChain [必需]
param callback_manager: Optional[BaseCallbackManager] = None

[已弃用] 请改用 callbacks

param callbacks: Callbacks = None

回调处理程序(或回调管理器)的可选列表。默认为 None。回调处理程序在调用链的整个生命周期中被调用,从 on_chain_start 开始,到 on_chain_end 或 on_chain_error 结束。每个自定义链可以选择性地调用其他回调方法,请参阅回调文档以获取完整详细信息。

param limit_to_domains: Optional[Sequence[str]] = None

用于限制 API 链可以访问的域。

  • 例如,要仅限制为域 https://www.example.com,请设置

    limit_to_domains=[“https://www.example.com”].

  • 默认值是一个空元组,这意味着默认情况下不允许任何域。根据设计,这将在实例化时引发错误。

  • 如果您想默认允许所有域,请使用 None - 出于安全原因,不建议这样做,因为它将允许恶意用户向任意 URL 发出请求,包括可以从服务器访问的内部 API。

param memory: Optional[BaseMemory] = None

可选的内存对象。默认为 None。Memory 是一个类,它在每个链的开始和结束时被调用。在开始时,内存加载变量并将它们传递到链中。在结束时,它保存任何返回的变量。有许多不同类型的内存 - 请参阅内存文档以获取完整目录。

param metadata: Optional[Dict[str, Any]] = None

与链关联的可选元数据。默认为 None。此元数据将与对此链的每次调用相关联,并作为参数传递给 callbacks 中定义的处理程序。您可以使用这些来识别链的特定实例及其用例。

param requests_wrapper: TextRequestsWrapper [必需]
param tags: Optional[List[str]] = None

与链关联的可选标签列表。默认为 None。这些标签将与对此链的每次调用相关联,并作为参数传递给 callbacks 中定义的处理程序。您可以使用这些来识别链的特定实例及其用例。

param verbose: bool [可选]

是否在 verbose 模式下运行。在 verbose 模式下,一些中间日志将打印到控制台。默认为全局 verbose 值,可通过 langchain.globals.get_verbose() 访问。

__call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) Dict[str, Any]

自 langchain==0.1.0 版本后已弃用: 请改用 invoke

执行链。

参数
  • inputs (Union[Dict[str, Any], Any]) – 输入字典,或者如果链仅需要一个参数,则为单个输入。应包含 Chain.input_keys 中指定的所有输入,但链的内存将设置的输入除外。

  • return_only_outputs (bool) – 是否仅在响应中返回输出。如果为 True,则仅返回由此链生成的新键。如果为 False,则将返回输入键和由此链生成的新键。默认为 False。

  • callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 用于此链运行的回调。这些回调将添加到在构建期间传递给链的回调之外调用,但只有这些运行时回调会传播到对其他对象的调用。

  • tags (Optional[List[str]]) – 要传递给所有回调的字符串标签列表。这些标签将添加到在构建期间传递给链的标签之外传递,但只有这些运行时标签会传播到对其他对象的调用。

  • metadata (Optional[Dict[str, Any]]) – 与链关联的可选元数据。默认为 None

  • include_run_info (bool) – 是否在响应中包含运行信息。默认为 False。

  • run_name (Optional[str]) –

返回

一个包含命名输出的字典。应包含在其中指定的所有输出

Chain.output_keys.

返回类型

Dict[str, Any]

async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output]

默认实现使用 asyncio.gather 并行运行 ainvoke。

批处理的默认实现适用于 IO 绑定的可运行对象。

如果子类可以更有效地进行批处理,则应重写此方法;例如,如果底层 Runnable 使用支持批处理模式的 API。

参数
  • inputs (List[Input]) – Runnable 的输入列表。

  • config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – 调用 Runnable 时要使用的配置。该配置支持标准键,例如用于跟踪目的的“tags”、“metadata”,用于控制并行执行多少工作的“max_concurrency”以及其他键。有关更多详细信息,请参阅 RunnableConfig。默认为 None。

  • return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。

  • kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。

返回

来自 Runnable 的输出列表。

返回类型

List[Output]

async abatch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) AsyncIterator[Tuple[int, Union[Output, Exception]]]

在一系列输入上并行运行 ainvoke,并在结果完成时生成结果。

参数
  • inputs (Sequence[Input]) – Runnable 的输入列表。

  • config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) – 调用 Runnable 时要使用的配置。该配置支持标准键,例如用于跟踪目的的“tags”、“metadata”,用于控制并行执行多少工作的“max_concurrency”以及其他键。有关更多详细信息,请参阅 RunnableConfig。默认为 None。默认为 None。

  • return_exceptions (bool) – 是否返回异常而不是引发异常。默认为 False。

  • kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。

产生

输入索引和 Runnable 输出的元组。

返回类型

AsyncIterator[Tuple[int, Union[Output, Exception]]]

async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) Dict[str, Any]

自 langchain==0.1.0 版本后已弃用: 请改用 ainvoke

异步执行链。

参数
  • inputs (Union[Dict[str, Any], Any]) – 输入字典,或者如果链仅需要一个参数,则为单个输入。应包含 Chain.input_keys 中指定的所有输入,但链的内存将设置的输入除外。

  • return_only_outputs (bool) – 是否仅在响应中返回输出。如果为 True,则仅返回由此链生成的新键。如果为 False,则将返回输入键和由此链生成的新键。默认为 False。

  • callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 用于此链运行的回调。这些回调将添加到在构建期间传递给链的回调之外调用,但只有这些运行时回调会传播到对其他对象的调用。

  • tags (Optional[List[str]]) – 要传递给所有回调的字符串标签列表。这些标签将添加到在构建期间传递给链的标签之外传递,但只有这些运行时标签会传播到对其他对象的调用。

  • metadata (Optional[Dict[str, Any]]) – 与链关联的可选元数据。默认为 None

  • include_run_info (bool) – 是否在响应中包含运行信息。默认为 False。

  • run_name (Optional[str]) –

返回

一个包含命名输出的字典。应包含在其中指定的所有输出

Chain.output_keys.

返回类型

Dict[str, Any]

async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) Dict[str, Any]

ainvoke 的默认实现,从线程调用 invoke。

即使 Runnable 没有实现 invoke 的原生异步版本,默认实现也允许使用异步代码。

如果子类可以异步运行,则应重写此方法。

参数
  • input (Dict[str, Any]) –

  • config (Optional[RunnableConfig]) –

  • kwargs (Any) –

返回类型

Dict[str, Any]

apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) List[Dict[str, str]]

Deprecated since version langchain==0.1.0: 使用 batch 代替。

对列表中的所有输入调用链。

参数
返回类型

List[Dict[str, str]]

async aprep_inputs(inputs: Union[Dict[str, Any], Any]) Dict">[str, str]

准备链的输入,包括从内存中添加输入。

参数

inputs (Union[Dict[str, Any], Any]) – 原始输入的字典,或者如果链只期望一个参数,则为单个输入。应包含 Chain.input_keys 中指定的所有输入,但链的内存将设置的输入除外。

返回

所有输入的字典,包括链的内存添加的输入。

返回类型

Dict[str, str]

async aprep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) Dict[str, str]

验证并准备链的输出,并将关于此运行的信息保存到内存中。

参数
  • inputs (Dict[str, str]) – 链输入的字典,包括链内存添加的任何输入。

  • outputs (Dict[str, str]) – 初始链输出的字典。

  • return_only_outputs (bool) – 是否仅返回链输出。如果为 False,则输入也会添加到最终输出中。

返回

最终链输出的字典。

返回类型

Dict[str, str]

async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) Any

自 langchain==0.1.0 版本后已弃用: 请改用 ainvoke

执行链的便捷方法。

此方法与 Chain.__call__ 之间的主要区别在于,此方法期望输入直接作为位置参数或关键字参数传入,而 Chain.__call__ 期望单个输入字典包含所有输入

参数
  • *args (Any) – 如果链期望单个输入,则可以作为唯一的位置参数传入。

  • callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 用于此链运行的回调。这些回调将添加到在构建期间传递给链的回调之外调用,但只有这些运行时回调会传播到对其他对象的调用。

  • tags (Optional[List[str]]) – 要传递给所有回调的字符串标签列表。这些标签将添加到在构建期间传递给链的标签之外传递,但只有这些运行时标签会传播到对其他对象的调用。

  • **kwargs (Any) – 如果链期望多个输入,则可以直接作为关键字参数传入。

  • metadata (Optional[Dict[str, Any]]) –

  • **kwargs

返回

链的输出。

返回类型

Any

Example

# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."

# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
as_tool(args_schema: Optional[Type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, arg_types: Optional[Dict[str, Type]] = None) BaseTool

Beta

此 API 处于 Beta 阶段,将来可能会发生变化。

从 Runnable 创建 BaseTool。

as_tool 将从 Runnable 实例化一个具有名称、描述和 args_schema 的 BaseTool。在可能的情况下,模式从 runnable.get_input_schema 推断。或者(例如,如果 Runnable 接受字典作为输入,并且未键入特定字典键),可以使用 args_schema 直接指定模式。您还可以传递 arg_types 以仅指定必需的参数及其类型。

参数
  • args_schema (Optional[Type[BaseModel]]) – 工具的模式。默认为 None。

  • name (Optional[str]) – 工具的名称。默认为 None。

  • description (Optional[str]) – 工具的描述。默认为 None。

  • arg_types (Optional[Dict[str, Type]]) – 参数名称到类型的字典。默认为 None。

返回

BaseTool 实例。

返回类型

BaseTool

Typed dict input

from typing import List
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda

class Args(TypedDict):
    a: int
    b: List[int]

def f(x: Args) -> str:
    return str(x["a"] * max(x["b"]))

runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})

dict 输入,通过 args_schema 指定模式

from typing import Any, Dict, List
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.runnables import RunnableLambda

def f(x: Dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

class FSchema(BaseModel):
    """Apply a function to an integer and list of integers."""

    a: int = Field(..., description="Integer")
    b: List[int] = Field(..., description="List of ints")

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})

dict 输入,通过 arg_types 指定模式

from typing import Any, Dict, List
from langchain_core.runnables import RunnableLambda

def f(x: Dict[str, Any]) -> str:
    return str(x["a"] * max(x["b"]))

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})

String input

from langchain_core.runnables import RunnableLambda

def f(x: str) -> str:
    return x + "a"

def g(x: str) -> str:
    return x + "z"

runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")

New in version 0.2.14.

async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) AsyncIterator[Output]

astream 的默认实现,它调用 ainvoke。如果子类支持流式输出,则应覆盖此方法。

参数
  • input (Input) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。

  • kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。

产生

Runnable 的输出。

返回类型

AsyncIterator[Output]

astream_events(input: Any, config: Optional[RunnableConfig] = None, *, version: Literal['v1', 'v2'], include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Any) AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]

Beta

此 API 处于 Beta 阶段,将来可能会发生变化。

生成事件流。

用于创建 StreamEvents 的迭代器,该迭代器提供关于 Runnable 进度的实时信息,包括来自中间结果的 StreamEvents。

StreamEvent 是一个具有以下模式的字典

  • event: str - 事件名称的格式为:

    格式:on_[runnable_type]_(start|stream|end)。

  • name: str - 生成事件的 Runnable 的名称。

  • run_id: str - 随机生成的 ID,与给定 Runnable 执行的实例关联,该 Runnable 发出事件。作为父 Runnable 执行一部分调用的子 Runnable 将被分配其自己的唯一 ID。

    Runnable 发出事件。作为父 Runnable 执行一部分调用的子 Runnable 将被分配其自己的唯一 ID。

  • parent_ids: List[str] - 生成事件的父 runnable 的 ID 列表。根 Runnable 将具有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。

    generated the event. The root Runnable will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.

  • tags: Optional[List[str]] - 生成事件的 Runnable 的标签。

    the event.

  • metadata: Optional[Dict[str, Any]] - 生成事件的 Runnable 的元数据。

    that generated the event.

  • data: Dict[str, Any]

下面是一个表格,说明了各种链可能发出的一些事件。为了简洁起见,元数据字段已从表格中省略。链定义已包含在表格之后。

注意 此参考表适用于 V2 版本的架构。

event

name

chunk

input

output

on_chat_model_start

[model name]

{“messages”: [[SystemMessage, HumanMessage]]}

on_chat_model_stream

[model name]

AIMessageChunk(content=”hello”)

on_chat_model_end

[model name]

{“messages”: [[SystemMessage, HumanMessage]]}

AIMessageChunk(content=”hello world”)

on_llm_start

[model name]

{‘input’: ‘hello’}

on_llm_stream

[model name]

‘Hello’

on_llm_end

[model name]

‘Hello human!’

on_chain_start

format_docs

on_chain_stream

format_docs

“hello world!, goodbye world!”

on_chain_end

format_docs

[Document(…)]

“hello world!, goodbye world!”

on_tool_start

some_tool

{“x”: 1, “y”: “2”}

on_tool_end

some_tool

{“x”: 1, “y”: “2”}

on_retriever_start

[retriever name]

{“query”: “hello”}

on_retriever_end

[retriever name]

{“query”: “hello”}

[Document(…), ..]

on_prompt_start

[template_name]

{“question”: “hello”}

on_prompt_end

[template_name]

{“question”: “hello”}

ChatPromptValue(messages: [SystemMessage, …])

除了标准事件外,用户还可以调度自定义事件(请参阅下面的示例)。

自定义事件将仅在 API 的 v2 版本中显示!

自定义事件具有以下格式

Attribute

Type

Description

name

str

事件的用户定义名称。

data

Any

与事件关联的数据。这可以是任何内容,但我们建议使其可 JSON 序列化。

以下是与上面显示的标准事件关联的声明

format_docs:

def format_docs(docs: List[Document]) -> str:
    '''Format the docs.'''
    return ", ".join([doc.page_content for doc in docs])

format_docs = RunnableLambda(format_docs)

some_tool:

@tool
def some_tool(x: int, y: str) -> dict:
    '''Some_tool.'''
    return {"x": x, "y": y}

prompt:

template = ChatPromptTemplate.from_messages(
    [("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})

Example

from langchain_core.runnables import RunnableLambda

async def reverse(s: str) -> str:
    return s[::-1]

chain = RunnableLambda(func=reverse)

events = [
    event async for event in chain.astream_events("hello", version="v2")
]

# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
    {
        "data": {"input": "hello"},
        "event": "on_chain_start",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"chunk": "olleh"},
        "event": "on_chain_stream",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
    {
        "data": {"output": "olleh"},
        "event": "on_chain_end",
        "metadata": {},
        "name": "reverse",
        "tags": [],
    },
]

Example: Dispatch Custom Event

from langchain_core.callbacks.manager import (
    adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio


async def slow_thing(some_input: str, config: RunnableConfig) -> str:
    """Do something that takes a long time."""
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 1 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    await adispatch_custom_event(
        "progress_event",
        {"message": "Finished step 2 of 3"},
        config=config # Must be included for python < 3.10
    )
    await asyncio.sleep(1) # Placeholder for some slow operation
    return "Done"

slow_thing = RunnableLambda(slow_thing)

async for event in slow_thing.astream_events("some_input", version="v2"):
    print(event)
参数
  • input (Any) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。

  • version (Literal['v1', 'v2']) – 要使用的架构版本,可以是 v2v1。用户应使用 v2v1 用于向后兼容,将在 0.4.0 中弃用。在 API 稳定之前,不会分配默认值。自定义事件将仅在 v2 中显示。

  • include_names (Optional[Sequence[str]]) – 仅包括来自具有匹配名称的 runnable 的事件。

  • include_types (Optional[Sequence[str]]) – 仅包括来自具有匹配类型的 runnable 的事件。

  • include_tags (Optional[Sequence[str]]) – 仅包括来自具有匹配标签的 runnable 的事件。

  • exclude_names (Optional[Sequence[str]]) – 排除来自具有匹配名称的 runnable 的事件。

  • exclude_types (Optional[Sequence[str]]) – 排除来自具有匹配类型的 runnable 的事件。

  • exclude_tags (Optional[Sequence[str]]) – 排除来自具有匹配标签的 runnable 的事件。

  • kwargs (Any) – 要传递给 Runnable 的其他关键字参数。这些参数将传递给 astream_log,因为 astream_events 的此实现是基于 astream_log 构建的。

产生

StreamEvents 的异步流。

Raises

NotImplementedError – 如果版本不是 v1v2

返回类型

AsyncIterator[Union[StandardStreamEvent, CustomStreamEvent]]

batch(inputs: List[Input], config: Optional[Union[RunnableConfig], List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) List[Output]

默认实现使用线程池执行器并行运行 invoke。

批处理的默认实现适用于 IO 绑定的可运行对象。

如果子类可以更有效地进行批处理,则应重写此方法;例如,如果底层 Runnable 使用支持批处理模式的 API。

参数
  • inputs (List[Input]) –

  • config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) –

  • return_exceptions (bool) –

  • kwargs (Optional[Any]) –

返回类型

List[Output]

batch_as_completed(inputs: Sequence[Input], config: Optional[Union[RunnableConfig], Sequence[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) Iterator[Tuple[int, Union[Output, Exception]]]

并行运行 invoke 在输入列表上,并在完成时产生结果。

参数
  • inputs (Sequence[Input]) –

  • config (Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]) –

  • return_exceptions (bool) –

  • kwargs (Optional[Any]) –

返回类型

Iterator[Tuple[int, Union[Output, Exception]]]

configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) RunnableSerializable[Input, Output]

配置可在运行时设置的 Runnables 的备选项。

参数
  • which (ConfigurableField) – 将用于选择备选项的 ConfigurableField 实例。

  • default_key (str) – 如果未选择备选项,则使用的默认键。默认为“default”。

  • prefix_keys (bool) – 是否使用 ConfigurableField id 作为键的前缀。默认为 False。

  • **kwargs (Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) – 键到 Runnable 实例或返回 Runnable 实例的可调用对象的字典。

返回

配置了备选项的新 Runnable。

返回类型

RunnableSerializable[Input, Output]

from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatAnthropic(
    model_name="claude-3-sonnet-20240229"
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="anthropic",
    openai=ChatOpenAI()
)

# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)

# uses ChatOpenAI
print(
    model.with_config(
        configurable={"llm": "openai"}
    ).invoke("which organization created you?").content
)
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) RunnableSerializable[Input, Output]

在运行时配置特定的 Runnable 字段。

参数

**kwargs (Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) – 要配置的 ConfigurableField 实例的字典。

返回

配置字段后的新的 Runnable。

返回类型

RunnableSerializable[Input, Output]

from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI

model = ChatOpenAI(max_tokens=20).configurable_fields(
    max_tokens=ConfigurableField(
        id="output_token_number",
        name="Max tokens in the output",
        description="The maximum number of tokens in the output",
    )
)

# max_tokens = 20
print(
    "max_tokens_20: ",
    model.invoke("tell me something about chess").content
)

# max_tokens = 200
print("max_tokens_200: ", model.with_config(
    configurable={"output_token_number": 200}
    ).invoke("tell me something about chess").content
)
classmethod from_llm_and_api_docs(llm: BaseLanguageModel, api_docs: str, headers: Optional[dict] = None, api_url_prompt: BasePromptTemplate = PromptTemplate(input_variables=['api_docs', 'question'], template='You are given the below API Documentation:\n{api_docs}\nUsing this documentation, generate the full API url to call for answering the user question.\nYou should build the API url in order to get a response that is as short as possible, while still getting the necessary information to answer the question. Pay attention to deliberately exclude any unnecessary pieces of data in the API call.\n\nQuestion:{question}\nAPI url:'), api_response_prompt: BasePromptTemplate = PromptTemplate(input_variables=['api_docs', 'api_response', 'api_url', 'question'], template='You are given the below API Documentation:\n{api_docs}\nUsing this documentation, generate the full API url to call for answering the user question.\nYou should build the API url in order to get a response that is as short as possible, while still getting the necessary information to answer the question. Pay attention to deliberately exclude any unnecessary pieces of data in the API call.\n\nQuestion:{question}\nAPI url: {api_url}\n\nHere is the response from the API:\n\n{api_response}\n\nSummarize this response to answer the original question.\n\nSummary:'), limit_to_domains: Optional[Sequence[str]] = (), **kwargs: Any) APIChain[source]

仅从 LLM 和 api 文档加载链。

参数
返回类型

APIChain

invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) Dict[str, Any]

将单个输入转换为输出。覆盖此方法以实现自定义逻辑。

参数
  • input (Dict[str, Any]) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 调用 Runnable 时使用的配置。该配置支持标准键,如 ‘tags’、‘metadata’ 用于追踪目的,‘max_concurrency’ 用于控制并行执行的工作量,以及其他键。请参考 RunnableConfig 获取更多详细信息。

  • kwargs (Any) –

返回

Runnable 的输出。

返回类型

Dict[str, Any]

prep_inputs(inputs: Union[Dict[str, Any], Any]) Dict[str, str]

准备链的输入,包括从内存中添加输入。

参数

inputs (Union[Dict[str, Any], Any]) – 原始输入的字典,或者如果链只期望一个参数,则为单个输入。应包含 Chain.input_keys 中指定的所有输入,但链的内存将设置的输入除外。

返回

所有输入的字典,包括链的内存添加的输入。

返回类型

Dict[str, str]

prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) Dict[str, str]

验证并准备链的输出,并将关于此运行的信息保存到内存中。

参数
  • inputs (Dict[str, str]) – 链输入的字典,包括链内存添加的任何输入。

  • outputs (Dict[str, str]) – 初始链输出的字典。

  • return_only_outputs (bool) – 是否仅返回链输出。如果为 False,则输入也会添加到最终输出中。

返回

最终链输出的字典。

返回类型

Dict[str, str]

run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) Any

自 langchain==0.1.0 版本后已弃用: 请改用 invoke

执行链的便捷方法。

此方法与 Chain.__call__ 之间的主要区别在于,此方法期望输入直接作为位置参数或关键字参数传入,而 Chain.__call__ 期望单个输入字典包含所有输入

参数
  • *args (Any) – 如果链期望单个输入,则可以作为唯一的位置参数传入。

  • callbacks (Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]) – 用于此链运行的回调。这些回调将添加到在构建期间传递给链的回调之外调用,但只有这些运行时回调会传播到对其他对象的调用。

  • tags (Optional[List[str]]) – 要传递给所有回调的字符串标签列表。这些标签将添加到在构建期间传递给链的标签之外传递,但只有这些运行时标签会传播到对其他对象的调用。

  • **kwargs (Any) – 如果链期望多个输入,则可以直接作为关键字参数传入。

  • metadata (Optional[Dict[str, Any]]) –

  • **kwargs

返回

链的输出。

返回类型

Any

Example

# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."

# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
save(file_path: Union[Path, str]) None

保存链。

期望实现 Chain._chain_type 属性,并且 memory 为空。

空。

参数

file_path (Union[Path, str]) – 保存链的文件路径。

返回类型

None

Example

chain.save(file_path="path/chain.yaml")
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) Iterator[Output]

stream 的默认实现,它调用 invoke。如果子类支持流式输出,则应覆盖此方法。

参数
  • input (Input) – Runnable 的输入。

  • config (Optional[RunnableConfig]) – 用于 Runnable 的配置。默认为 None。

  • kwargs (Optional[Any]) – 要传递给 Runnable 的其他关键字参数。

产生

Runnable 的输出。

返回类型

Iterator[Output]

to_json() Union[SerializedConstructor, SerializedNotImplemented]

将 Runnable 序列化为 JSON。

返回

Runnable 的 JSON 可序列化表示形式。

返回类型

Union[SerializedConstructor, SerializedNotImplemented]