langchain.agents.tool_calling_agent.base
.create_tool_calling_agent¶
- langchain.agents.tool_calling_agent.base.create_tool_calling_agent(llm: ~langchain_core.language_models.base.BaseLanguageModel, tools: ~typing.Sequence[~langchain_core.tools.BaseTool], prompt: ~langchain_core.prompts.chat.ChatPromptTemplate, *, message_formatter: ~typing.Callable[[~typing.Sequence[~typing.Tuple[~langchain_core.agents.AgentAction, str]]], ~typing.List[~langchain_core.messages.base.BaseMessage]] = <function format_to_tool_messages>) Runnable [来源]¶
创建一个使用工具的智能体。
- 参数
llm (BaseLanguageModel) – 作为智能体使用的LLM。
tools (Sequence[BaseTool]) – 智能体可访问的工具。
prompt (ChatPromptTemplate) – 要使用的提示语。有关期望输入变量的更多内容,请参阅下面的提示部分。
message_formatter (Callable[[Sequence[Tuple[AgentAction, str]]], List[BaseMessage]]) – 将(智能体动作,工具输出)元组转换为FunctionMessages的格式化函数。
- 返回值
表示智能体的Runnable序列。它接受与传递给提示相同的所有输入变量。它返回的输出是AgentAction或AgentFinish。
- 返回类型
示例
from langchain.agents import AgentExecutor, create_tool_calling_agent, tool from langchain_anthropic import ChatAnthropic from langchain_core.prompts import ChatPromptTemplate prompt = ChatPromptTemplate.from_messages( [ ("system", "You are a helpful assistant"), ("placeholder", "{chat_history}"), ("human", "{input}"), ("placeholder", "{agent_scratchpad}"), ] ) model = ChatAnthropic(model="claude-3-opus-20240229") @tool def magic_function(input: int) -> int: """Applies a magic function to an input.""" return input + 2 tools = [magic_function] agent = create_tool_calling_agent(model, tools, prompt) agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) agent_executor.invoke({"input": "what is the value of magic_function(3)?"}) # Using with chat history from langchain_core.messages import AIMessage, HumanMessage agent_executor.invoke( { "input": "what's my name?", "chat_history": [ HumanMessage(content="hi! my name is bob"), AIMessage(content="Hello Bob! How can I assist you today?"), ], } )
提示
- 智能体提示必须有一个 agent_scratchpad 键,它是一个
MessagesPlaceholder
。中间的智能体动作和工具输出消息将传递到这里。