langchain.agents.structured_chat.base
.create_structured_chat_agent¶
- langchain.agents.structured_chat.base.create_structured_chat_agent(llm: ~langchain_core.language_models.base.BaseLanguageModel, tools: ~typing.Sequence[~langchain_core.tools.BaseTool], prompt: ~langchain_core.prompts.chat.ChatPromptTemplate, tools_renderer: ~typing.Callable[[~typing.List[~langchain_core.tools.BaseTool]], str] = <function render_text_description_and_args>, *, stop_sequence: ~typing.Union[bool, ~typing.List[str]] = True) Runnable [source]¶
创建一个旨在支持多输入工具的智能体。
- 参数
llm (BaseLanguageModel) – 作为智能体使用的LLM。
tools (Sequence[BaseTool]) – 该智能体可访问的工具。
prompt (ChatPromptTemplate) – 要使用的提示。有关更多信息,请参阅下面的提示部分。
stop_sequence (Union[bool, List[str]]) –
bool或字符串列表。如果为True,则添加“观察:”作为停止标记以避免幻觉。如果为False,则不添加停止标记。如果为字符串列表,则使用提供的列表作为停止标记。
默认为True。如果您使用的LLM不支持停止序列,则可以将其设置为False。
tools_renderer (Callable[[List[BaseTool]], str]) – 这控制工具如何转换为字符串然后输入LLM。默认为render_text_description。
- 返回
表示智能体的可运行序列。它接受与传递的提示相同的所有输入变量。作为输出,它返回AgentAction或AgentFinish。
- 返回类型
示例
from langchain import hub from langchain_community.chat_models import ChatOpenAI from langchain.agents import AgentExecutor, create_structured_chat_agent prompt = hub.pull("hwchase17/structured-chat-agent") model = ChatOpenAI() tools = ... agent = create_structured_chat_agent(model, tools, prompt) agent_executor = AgentExecutor(agent=agent, tools=tools) agent_executor.invoke({"input": "hi"}) # Using with chat history from langchain_core.messages import AIMessage, HumanMessage agent_executor.invoke( { "input": "what's my name?", "chat_history": [ HumanMessage(content="hi! my name is bob"), AIMessage(content="Hello Bob! How can I assist you today?"), ], } )
提示
- 提示必须具有输入键
tools:包含每个工具的描述和参数。
tool_names:包含所有工具名称。
agent_scratchpad:包含以前的智能体操作和工具输出作为一个字符串。
以下是一个例子
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder system = '''Respond to the human as helpfully and accurately as possible. You have access to the following tools: {tools} Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input). Valid "action" values: "Final Answer" or {tool_names} Provide only ONE action per $JSON_BLOB, as shown: ``` {{ "action": $TOOL_NAME, "action_input": $INPUT }} ``` Follow this format: Question: input question to answer Thought: consider previous and subsequent steps Action: ``` $JSON_BLOB ``` Observation: action result ... (repeat Thought/Action/Observation N times) Thought: I know what to respond Action: ``` {{ "action": "Final Answer", "action_input": "Final response to human" }} Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation''' human = '''{input} {agent_scratchpad} (reminder to respond in a JSON blob no matter what)''' prompt = ChatPromptTemplate.from_messages( [ ("system", system), MessagesPlaceholder("chat_history", optional=True), ("human", human), ] )